Patents by Inventor Kevin Rivera

Kevin Rivera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11822300
    Abstract: Disclosed is a system for controlling pool/spa components. More particularly, disclosed is a system for controlling pool/spa components including a display screen and one or more processors presenting a control user interface for display on the display screen, wherein the control user interface includes a home screen comprising a first portion containing a first plurality of buttons and/or controls for controlling a first group of the plurality of pool/spa components associated with a first body of water, and a second portion containing a second plurality of buttons and/or controls for controlling a second group of the plurality of pool/spa components associated with a second body of water.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: November 21, 2023
    Assignee: Hayward Industries, Inc.
    Inventors: Kevin Potucek, Gregory Fournier, James Murdock, Robert Heon, David Blaine, Craig Horrocks, Kenneth White, Jr., Murat Dymov, Michael Nilsson, Thomas-Eric Béliveau, Deyin Xu, Patrick Mainville, Qiwei Huang, Linnette Rivera
  • Publication number: 20230338140
    Abstract: A prosthetic heart valve can comprise a stent frame radially movable between a contracted configuration and a maximum expanded configuration. The stent assembly can comprise a plurality of longitudinally extending jack strut assemblies, wherein each jack strut assembly comprises a proximal jack strut comprising a distal surface, a distal jack strut comprising a proximal surface, and a jack screw connecting the proximal jack strut and the distal jack strut. The proximal surface of each distal jack strut does not contact the distal surface of each respective proximal jack strut when the stent assembly is in the contracted configuration. The proximal surface of each distal jack strut contacts the distal surface of each respective proximal jack strut when the stent assembly is in the maximum expanded configuration.
    Type: Application
    Filed: May 16, 2023
    Publication date: October 26, 2023
    Inventors: Richard George Cartledge, Kevin W. Smith, Thomas O. Bales, JR., Derek Dee Deville, Korey Kline, Max Pierre Mendez, Matthew A. Palmer, Michael Walter Kirk, Carlos Rivera, Eric Petersen, M. Sean McBrayer
  • Patent number: 11759203
    Abstract: A surgical instrument comprised of a stapling end effector having a staple-applying assembly with opposing stapling surfaces defining a closure distance therebetween, wherein at least one stapling surface is movable, and a handle connected to the stapling end effector and comprising a staple-firing assembly that causes the staple-applying assembly to staple tissue between the stapling surfaces. The handle further comprises a power source, electric motor, and closure assembly that has a drive part movable by the motor, detection mechanism, a controller. The drive part is connected to the stapling end effector. When the motor is supplied with power, the drive part advances the movable stapling surface towards the opposing stapling surface. The detection mechanism detects a position of the drive part along the drive-part axis and the controller is configured to prevent stapling unless the drive part is at a position corresponding to a closure distance within a pre-defined range.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 19, 2023
    Assignee: Cilag GmbH International
    Inventors: Kevin W. Smith, Thomas O. Bales, Jr., Derek Dee Deville, Carlos Rivera, Matthew A. Palmer
  • Publication number: 20230287072
    Abstract: The present disclosure provides a method of delivery, treatment, and prevention of neuropathy and/or pain associated with NGF treatment for an underline disease or condition with a NGF mutant, such as NGFR100W, that does not elicit pain. The present disclosure further provides a composition of micro- and/or nano-rods attached with the NGF mutant, such as NGFR100W, which are injectable or administered to a target for desired therapies.
    Type: Application
    Filed: August 2, 2021
    Publication date: September 14, 2023
    Applicants: The Regents of the University of California, The Steadman Clinic & Steadman Philippon Research Institute
    Inventors: Chengbiao WU, Kijung SUNG, Chelsea Shileds BAHNEY, Kevin RIVERA, Tejal DESAI
  • Patent number: 11751873
    Abstract: A surgical device comprising a surgical end effector, an actuation assembly having a part operable to move between a first position and a second position, an electrically-powered motor, a transmission mechanically connecting the motor to the part and being operable to selectively displace the part between the first and second positions when the motor is operated, and a manual release mechanically coupled to the transmission to selectively interrupt the transmission and, during interruption, displace the part towards the first position independent of operation of the motor.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: September 12, 2023
    Assignee: CILAG GMBH INTERNATIONAL
    Inventors: Kevin W. Smith, Thomas O. Bales, Jr., Derek Dee Deville, Carlos Rivera, Matthew A. Palmer
  • Patent number: 11707356
    Abstract: A prosthetic heart valve includes a frame, a valve, and an expansion element. The frame is movable between contracted and expanded configurations and includes first struts and second struts non-hingedly coupled together. The second struts are configured to pivot relative to the first struts as the frame moves between the contracted and expanded configurations. The valve is coupled to the frame and includes leaflets. The expansion element extends through a lumen of the first struts. The expansion element is slidable relative to the lumen of the first struts and is configured to move the frame incrementally from the contracted configuration and the expanded configuration and from the expanded configuration to the contracted configuration.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: July 25, 2023
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Richard George Cartledge, Kevin W. Smith, Thomas O. Bales, Jr., Derek Dee Deville, Korey Kline, Max Pierre Mendez, Matthew A. Palmer, Michael Walter Kirk, Carlos Rivera, Eric Petersen, M. Sean McBrayer
  • Publication number: 20220152152
    Abstract: The present disclosure is related to methods for stimulating bone fracture healing, comprising administering a pharmaceutical composition comprising biomaterial carriers comprising painless nerve growth factor (NGF).
    Type: Application
    Filed: November 17, 2021
    Publication date: May 19, 2022
    Inventors: Chelsea BAHNEY, Tejal DESAI, Kevin RIVERA, Chengbiao WU
  • Patent number: 10782190
    Abstract: A resistance temperature detector (RTD) that uses a ceramic matrix composite (CMC), such as a silicon carbide fiber-reinforced silicon carbide matrix, as an active temperature sensing element, which can operate at temperatures greater than 1000° C. or even 1600° C. Conductive indium tin oxide or a single elemental metal such as platinum is deposited on a dielectric or insulating layer such as mullite or an environmental barrier coating (EBC) on the substrate. Openings in the layer allow etching of the CMC surface in order to make high quality ohmic contacts with the conductive material, either directly or through a silicide diffusion barrier such as ITO. The RTD can measure both temperature and strain of the CMC. The use of an EBC, which typically is deposited on the CMC by the manufacturer, as the insulating or dielectric layer can be extended to other devices such as strain gages and thermocouples that use the CMC as a sensing element. The EBC can be masked and etched to form the openings.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: September 22, 2020
    Assignee: University of Rhode Island Board of Trustees
    Inventors: Otto J. Gregory, Kevin Rivera, Matthew Thomas Ricci
  • Patent number: 10690551
    Abstract: The subject of the present invention relates to a device that can be applied to the surface of a ceramic matrix composites (CMC) in such a way that the CMC itself will contribute to the extraordinarily large thermoelectric power. The present invention obtains greater resolution of temperature measurements, which can be obtained at exceedingly high temperatures.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: June 23, 2020
    Assignee: RHODE ISLAND COUNCIL ON POSTSECONDARY EDUCATION
    Inventors: Otto Gregory, John Rhoat, Kevin Rivera, Tommy Muth
  • Patent number: 10371588
    Abstract: Strain gages for use with ceramic matrix composites (CMCs), and methods of manufacture therefore. The strain gages use the CMC as a strain element. For semiconductor CMCs, for example SiC fiber-reinforced SiC CMC, their large gage factor enables high sensitivity, high accuracy strain measurements at high temperatures. By using a single elemental metal such as platinum, or another high temperature conductive material, the strain gages can operate at temperatures over 1600° C. The conductive material is preferably deposited on a dielectric or insulating layer, and contacts the CMC substrate through openings in that layer. The materials can be deposited using thin film vacuum techniques or thick film techniques such as pastes or inks. The strain gages can be configured to measure only the mechanical strain independent of the apparent or thermal strain. The strain gages can be incorporated into a bulk CMC structure during layup, and can optionally measure the strain of only desired fiber weave orientations.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: August 6, 2019
    Assignee: Rhode Island Council on Postsecondary Education
    Inventors: Otto Gregory, John T. Rhoat, Kevin Rivera
  • Publication number: 20180003576
    Abstract: Strain gages for use with ceramic matrix composites (CMCs), and methods of manufacture therefore. The strain gages use the CMC as a strain element. For semiconductor CMCs, for example SiC fiber-reinforced SiC CMC, their large gage factor enables high sensitivity, high accuracy strain measurements at high temperatures. By using a single elemental metal such as platinum, or another high temperature conductive material, the strain gages can operate at temperatures over 1600° C. The conductive material is preferably deposited on a dielectric or insulating layer, and contacts the CMC substrate through openings in that layer. The materials can be deposited using thin film vacuum techniques or thick film techniques such as pastes or inks. The strain gages can be configured to measure only the mechanical strain independent of the apparent or thermal strain. The strain gages can be incorporated into a bulk CMC structure during layup, and can optionally measure the strain of only desired fiber weave orientations.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Inventors: Otto Gregory, John T. Rhoat, Kevin Rivera
  • Publication number: 20170234739
    Abstract: The subject of the present invention relates to a device that can be applied to the surface of a ceramic matrix composites (CMC) in such a way that the CMC itself will contribute to the extraordinarily large thermoelectric power. The present invention obtains greater resolution of temperature measurements, which can be obtained at exceedingly high temperatures.
    Type: Application
    Filed: February 13, 2017
    Publication date: August 17, 2017
    Inventors: Otto Gregory, John Rhoat, Kevin Rivera, Tommy Muth