Patents by Inventor Kevin S. Bodner

Kevin S. Bodner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230022224
    Abstract: A method comprises displaying, on a graphical user interface (GUI), a first data visualization comprising a positional representation of a plurality of reaction sites from at least a portion of a substrate, wherein the positional representation of the first data visualization simultaneously indicates relative data quality of the plurality of reaction sites; and altering the first data visualization displayed on the GUI to a second data visualization, the second data visualization comprising the positional representation of the plurality of reaction sites from the at least the portion of the substrate, wherein the positional representation of the second data visualization simultaneously indicates relative data quality of the plurality of reaction sites from at least the portion of the substrate based on a comparison of the data quality values of the plurality of reaction sites an adjusted quality value threshold.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 26, 2023
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Harrison LEONG, Nivedita Sumi MAJUMDAR, Jeffrey A. MARKS, Theodore E. STRAUB, Ryan J. TALBOT, Kevin S. BODNER, David HOARD
  • Patent number: 11417037
    Abstract: A method for generating a data visualization is provided. The method includes displaying a representation of a portion of detected data from a substrate to a user. The method further includes generating a data quality value for the portion of detected data and displaying, along with the representation of the portion of detected data, an indication of data quality value for the portion of detected data. The method further includes selecting, by the user, a quality value threshold, and displaying an adjusted indication of data quality value for the portion of detected data meeting the quality value threshold.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: August 16, 2022
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Harrison Leong, Nivedita Sumi Majumdar, Jeffrey A. Marks, Theodore E. Straub, Ryan J. Talbot, Kevin S. Bodner, David Hoard
  • Publication number: 20210042972
    Abstract: A method for generating a data visualization is provided. The method includes displaying a representation of a portion of detected data from a substrate to a user. The method further includes generating a data quality value for the portion of detected data and displaying, along with the representation of the portion of detected data, an indication of data quality value for the portion of detected data. The method further includes selecting, by the user, a quality value threshold, and displaying an adjusted indication of data quality value for the portion of detected data meeting the quality value threshold.
    Type: Application
    Filed: July 24, 2020
    Publication date: February 11, 2021
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Harrison LEONG, Nivedita Sumi MAJUMDAR, Jeffrey A. MARKS, Theodore E. STRAUB, Ryan J. TALBOT, Kevin S. BODNER, David HOARD
  • Patent number: 10726589
    Abstract: A method for generating a data visualization is provided. The method includes displaying a representation of a portion of detected data from a substrate to a user. The method further includes generating a data quality value for the portion of detected data and displaying, along with the representation of the portion of detected data, an indication of data quality value for the portion of detected data. The method further includes selecting, by the user, a quality value threshold, and displaying an adjusted indication of data quality value for the portion of detected data meeting the quality value threshold.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: July 28, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Harrison Leong, Nivedita Sumi Majumdar, Jeffrey A. Marks, Theodore E. Straub, Ryan J. Talbot, Kevin S. Bodner, David Hoard
  • Publication number: 20150269756
    Abstract: A method for generating a data visualization is provided. The method includes displaying a representation of a portion of detected data from a substrate to a user. The method further includes generating a data quality value for the portion of detected data and displaying, along with the representation of the portion of detected data, an indication of data quality value for the portion of detected data. The method further includes selecting, by the user, a quality value threshold, and displaying an adjusted indication of data quality value for the portion of detected data meeting the quality value threshold.
    Type: Application
    Filed: November 7, 2013
    Publication date: September 24, 2015
    Inventors: Harrison Leong, Nivedita Sumi Majumdar, Jeffrey A. Marks, Theodore E. Straub, Ryan J. Talbot, Kevin S. Bodner, David Hoard
  • Publication number: 20150238919
    Abstract: Exemplary embodiments provide microfluidic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 27, 2015
    Inventors: Mark F. OLDHAM, Dar BAHATT, Kenneth J. LIVAK, Jason E. BABCOKE, H. Pin KAO, Stephen J. GUNSTREAM, Kevin S. BODNER, Douglas P. GREINER, Nigel P. BEARD
  • Publication number: 20150111200
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 23, 2015
    Inventors: J. Michael PHILLIPS, Kevin S. Bodner, Aldrich N. K. Lau, Mark F. Oldham, Donald R. Sandell, David H. Tracy, Steven J. Boege
  • Patent number: 8945481
    Abstract: Exemplary embodiments provide microfludic devices and methods for their use. The microfluidic device can include an array of M×N reaction sites formed by intersecting a first and second plurality of fluid channels of a flow layer. The flow layer can have a matrix design and/or a blind channel design to analyze a large number of samples under a limited number of conditions. The microfluidic device can also include a control layer including a valve system for regulating solution flow through fluid channels. In addition, by aligning the control layer with the fluid channels, the detection of the microfluidic devices, e.g., optical signal collection, can be improved by piping lights to/from the reaction sites. In an exemplary embodiment, guard channels can be included in the microfluidic device for thermal cycling and/or reducing evaporation from the reaction sites.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: February 3, 2015
    Assignee: Applied Biosystems, LLC
    Inventors: Mark F. Oldham, Kenneth J. Livak, Jason E. Babcoke, H. Pin Kao, Stephen J. Gunstream, Kevin S. Bodner, Douglas P. Greiner, Nigel P. Beard, Dar Bahatt
  • Publication number: 20150015876
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Application
    Filed: June 17, 2014
    Publication date: January 15, 2015
    Inventors: J. Michael PHILLIPS, Kevin S. Bodner, Aldrich N.K. Lau, Mark F. Oldham, Donald R. Sandell, David H. Tracy, Steven J. Boege
  • Publication number: 20140284496
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Application
    Filed: February 25, 2014
    Publication date: September 25, 2014
    Applicant: APPLIED BIOSYSTEMS, LLC
    Inventors: J. Michael Phillips, Kevin S. BODNER, Aldrich N. K. LAU, Mark F. OLDHAM, Donald R. SANDELL, David H. TRACY, Steven J. BOEGE
  • Patent number: 8659755
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: February 25, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: J. Michael Phillips, Kevin S. Bodner, Aldrich N. K. Lau, Steven J. Boege, Mark F. Oldham, Donald R. Sandell, David H. Tracy
  • Patent number: 8373854
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: February 12, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: J. Michael Phillips, Kevin S. Bodner, Aldrich N. K. Lau, Steven J. Boege, Mark F. Oldham, Donald R. Sandell, David H. Tracy
  • Publication number: 20110085168
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Application
    Filed: June 10, 2010
    Publication date: April 14, 2011
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: J. Michael Phillips, Aldrich N.K. Lau, Mark F. Oldham, Kevin S. Bodner, Steven J. Boege, Donald R. Sandell, David H. Tracy
  • Patent number: 7742164
    Abstract: The present teachings provide for systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards utilizing luminophores, such as nanocrystals, for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 22, 2010
    Assignee: Applied Biosystems, LLC
    Inventors: J. Michael Phillips, Aldrich N. K. Lau, Mark F. Oldham, Kevin S. Bodner, Steven J. Boege, Donald R. Sandell, David H. Tracy
  • Patent number: 7480042
    Abstract: Systems, and components thereof, for detecting and/or analyzing light. These systems can include, among others, optical reference standards for calibrating, validating, and/or monitoring light-detection systems, before, during, and/or after sample analysis.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: January 20, 2009
    Assignee: Applied Biosystems Inc.
    Inventors: J. Michael Phillips, Aldrich N. K. Lau, Mark F. Oldham, Kevin S. Bodner, Steven J. Boege, Donald R. Sandell, David H. Tracy
  • Publication number: 20090000690
    Abstract: Microfluidic devices having a diffusion-aided system for loading samples into the microfluidic device are provided. Methods of gas-venting a microfluidic device through a non-porous, gas permeable material sealing cover layer, for example, during liquid sample loading, are also provided. The non-porous, gas-permeable material can be, for example, a polysiloxane, for example, polydimethylsiloxane.
    Type: Application
    Filed: June 3, 2008
    Publication date: January 1, 2009
    Applicant: Applera Corporation
    Inventors: Mark F. Oldham, Ian A. Harding, Kevin S. Bodner
  • Patent number: 7452510
    Abstract: A multi-well microfiltration apparatus and method are provided and feature a manual touch-off system for transferring pendent drops hanging from discharge-conduits of a discharge-conduit array to respective receiving wells or receiving holes of a corresponding receiving array, with minimum or no cross-contamination between the discharge conduits, or the receiving wells or receiving holes. The manual touch-off is achieved by manually shifting a carriage that supports one of the arrays, into a position whereat pendent drops of fluid hanging from the distal ends of the discharge conduits contact the inner sidewalls of the corresponding receiving wells or receiving holes of the receiving array.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: November 18, 2008
    Assignee: Applied Biosystems Inc.
    Inventors: Todd A. Weinfield, Gary Lim, Donald R. Sandell, Kevin S. Bodner, Mark Borodkin, Mark Oldham, Jon Hoshizaki
  • Patent number: 7019267
    Abstract: A heater module is described that includes a heat distribution plate including a bottom portion having first and second sides and a plurality of projections extending away from one of the sides. A heat source is provided for heating the heat distribution plate, and, optionally, a heating tray can be used to receive the heat source and heat distribution plate. The heater module is adapted to engage a sample purification tray having a plurality of purification and/or discharge columns which can extend through openings in the heater module and direct a sample into a sample receiving tray. Methods of heating samples using the heater module are also described.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: March 28, 2006
    Assignee: Applera Corporation
    Inventors: Todd A. Weinfield, Gary Lim, Donald R. Sandell, Kevin S. Bodner, Mark Borodkin, Mark Oldham, Jon Hoshizaki
  • Patent number: 6906292
    Abstract: A heater module is described that includes a heat distribution plate including a bottom portion having first and second sides and a plurality of projections extending away from one of the sides. A heat source is provided for heating the heat distribution plate, and, optionally, a heating tray can be used to receive the heat source and heat distribution plate. The heater module is adapted to engage a sample purification tray having a plurality of purification and/or discharge columns which can extend through openings in the heater module and direct a sample into a sample receiving tray. Methods of heating samples using the heater module are also described.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: June 14, 2005
    Assignee: Applera Corporation
    Inventors: Todd A. Weinfield, Gary Lim, Donald R. Sandell, Kevin S. Bodner, Mark Borodkin, Mark Oldham, Jon Hoshizaki
  • Patent number: 6805842
    Abstract: A sample container for minimizing evaporation of a contained volume of sample includes a container housing, a repuncturable self-sealing membrane, and a collapsible sample bag. The container housing includes an open end and a hollow interior region. The repuncturable self-sealing membrane configured to self-seal after repeated punctures is engaged in the open end of the container housing and includes an exterior surface exposed to the external environment and an interior surface oriented toward the hollow interior region of the container housing. The collapsible sample bag includes a proximate end that is permanently attached to the interior surface of the repuncturable self-sealing membrane.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: October 19, 2004
    Assignee: MDS Sciex
    Inventors: Kevin S. Bodner, Tyler A. Palmer, Pejman Ghanouni