Patents by Inventor Kevin S. Fraser

Kevin S. Fraser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9827547
    Abstract: A method is disclosed for controlling retention time in a reactor, such as an autoclave, having a plurality of compartments separated by dividers with underflow openings. A retention time of the reaction mixture is calculated and compared with an optimal retention time, and the volumes of the reaction mixture in the compartments are adjusted while maintaining the flow rate of the reaction mixture, so as to change the retention time to a value which is closer to the optimal retention time. The reactor may include a level sensor in the last compartment for generating volume data; a control valve for controlling the liquid level in the last compartment; and a controller which receives volume data from the level sensor and controls operation of the control valve.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 28, 2017
    Assignee: HATCH LTD.
    Inventors: Kevin S. Fraser, Murray S. Pearson, William E. McCombe
  • Patent number: 9322076
    Abstract: A method and apparatus for controlling a temperature within a reactor vessel such as an autoclave operating at elevated temperature and pressure. The apparatus includes a preheating vessel for preheating a feed material such as an aqueous slurry. The preheating vessel forms part of a preheating control system providing the primary means of temperature control within the reactor vessel. The apparatus also comprises secondary means for heating and cooling the reactor. Feed material temperature is increased or decreased by the preheating control system, based on the reactor temperature. Where the preheating control system is at or near its capacity for heating or cooling, the secondary heating or cooling means is activated to bring the reactor temperature within an optimum range.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 26, 2016
    Assignee: HATCH LTD.
    Inventors: Kevin S. Fraser, Murray S. Pearson, William E. McCombe
  • Publication number: 20150050188
    Abstract: A method is disclosed for controlling retention time in a reactor, such as an autoclave, having a plurality of compartments separated by dividers with underflow openings. A retention time of the reaction mixture is calculated and compared with an optimal retention time, and the volumes of the reaction mixture in the compartments are adjusted while maintaining the flow rate of the reaction mixture, so as to change the retention time to a value which is closer to the optimal retention time. The reactor may include a level sensor in the last compartment for generating volume data; a control valve for controlling the liquid level in the last compartment; and a controller which receives volume data from the level sensor and controls operation of the control valve.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 19, 2015
    Applicant: Hatch Ltd.
    Inventors: Kevin S. Fraser, Murray S. Pearson, William E. McCombe
  • Patent number: 8702842
    Abstract: A method for removing elemental sulfur from a hot gas stream, such as an autoclave vent gas, while simultaneously cooling the gas stream. The method results in conversion of sulfur in the hot gas stream to the form of solid, non-sticky sulfur allotropes such as rhombic sulfur while avoiding formation of sticky sulfur allotropes such as monoclinic sulfur, thereby avoiding scaling and fouling of plant equipment. According the method, the hot gas stream is contacted with an aqueous medium containing a particulate material inside a quench vessel having a first inlet for the hot gas stream, a second inlet for the aqueous medium, and an outlet for removing a sulfur-containing liquid fraction from the vessel. At least a portion of the sulfur contained in the hot gas stream, along with other condensable materials, becomes incorporated into the aqueous medium and is subsequently drained from the vessel.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: April 22, 2014
    Assignee: Hatch Ltd.
    Inventors: Kevin S. Fraser, William E. McCombe
  • Publication number: 20110174155
    Abstract: A method for removing elemental sulfur from a hot gas stream, such as an autoclave vent gas, while simultaneously cooling the gas stream. The method results in conversion of sulfur in the hot gas stream to the form of solid, non-sticky sulfur allotropes such as rhombic sulfur while avoiding formation of sticky sulfur allotropes such as monoclinic sulfur, thereby avoiding scaling and fouling of plant equipment. According the method, the hot gas stream is contacted with an aqueous medium containing a particulate material inside a quench vessel having a first inlet for the hot gas stream, a second inlet for the aqueous medium, and an outlet for removing a sulfur-containing liquid fraction from the vessel. At least a portion of the sulfur contained in the hot gas stream, along with other condensable materials, becomes incorporated into the aqueous medium and is subsequently drained from the vessel.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: Hatch Ltd.
    Inventors: Kevin S. Fraser, William E. McCombe
  • Patent number: 7968048
    Abstract: A composite sparger for use in elevated temperature and corrosive environments. The composite sparger is formed from a thermally conductive non-combustible metal substrate. The surfaces of the conductive non-combustible metal exposed to the reactor environment are protected with a corrosion resistant layer. The corrosion resistant layer protects the substrate material from the corrosive environment of the reactor vessel and the substrate material conducts heat away from the corrosion resistant layer to prevent combustion of the corrosion resistant layer. The substrate material and corrosion resistant material may be selected so as to provide for sufficient thermal conduction to prevent combustion of the corrosion resistant material.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: June 28, 2011
    Assignee: Hatch Ltd.
    Inventors: Kevin S. Fraser, Murray Scott Pearson
  • Publication number: 20110143296
    Abstract: A method and apparatus are disclosed for controlling a temperature within a reactor vessel such as an autoclave operating at elevated temperature and pressure. The apparatus includes a preheating vessel for preheating a feed material such as an aqueous slurry. The preheating vessel forms part of a preheating control system which provides the primary means of temperature control within the reactor vessel, and the reactor temperature is used as the setpoint for the preheating control system. The apparatus also comprises secondary means for heating and cooling the reactor. The feed material temperature is increased or decreased by the preheating control system, based on the reactor temperature. This is sufficient to heat or cool the reactor under most process conditions. Where the preheating control system is at or near its capacity for heating or cooling, the secondary heating or cooling means is activated to bring the reactor temperature within an optimum range.
    Type: Application
    Filed: January 19, 2011
    Publication date: June 16, 2011
    Applicant: Hatch Ltd.
    Inventors: Kevin S. Fraser, Murray S. Pearson, William E. McCombe
  • Publication number: 20080292043
    Abstract: A composite sparger for use in elevated temperature and corrosive environments. The composite sparger is formed from a thermally conductive non-combustible metal substrate. The surfaces of the conductive non-combustible metal exposed to the reactor environment are protected with a corrosion resistant layer. The corrosion resistant layer protects the substrate material from the corrosive environment of the reactor vessel and the substrate material conducts heat away from the corrosion resistant layer to prevent combustion of the corrosion resistant layer. The substrate material and corrosion resistant material may be selected so as to provide for sufficient thermal conduction to prevent combustion of the corrosion resistant material.
    Type: Application
    Filed: September 1, 2004
    Publication date: November 27, 2008
    Inventors: Kevin S. Fraser, Murray Scott Pearson
  • Patent number: 7381384
    Abstract: Insulating members are provided for use in nozzles of elevated temperature process vessels employing a structural metal shell (24), an insulating refractory lining (14) and a corrosion-resistant membrane (18) lining between the structural shell and refractory lining. The insulating members comprise pre-formed insulating sleeves and inserts and are made of a thermally insulating material having sufficient thickness and sufficiently low thermal conductivity such that, when the sleeve or insert is heated by the process temperature during operation of the vessel, the thermal energy transmitted through the sleeve or insert to the membrane is insufficient to raise the temperature of the membrane above a target temperature. The most preferred thermally insulating materials are fluoropolymers such as poly(tetrafluoroethylene) flouropolymer resins.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: June 3, 2008
    Assignee: Hatch Ltd.
    Inventors: Kevin S. Fraser, Patrick Henry Lauzon, Arthur W Cooper, Albert J. Koning
  • Patent number: 6945775
    Abstract: The temperature of a metallurgical slurry in a heater vessel is accurately controlled by heating a first portion of the slurry in the heater vessel by contact with a heating medium such as steam, and by adding to the heater vessel controlled portions of a slurry at lower temperature. The lower temperature slurry may be added to the heater vessel in an intermittent or continuous manner, with addition of the lower temperature slurry being regulated by a valve, the operation of which is controlled by a control device which receives temperature information from one or more temperature sensors.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: September 20, 2005
    Inventors: Kevin S. Fraser, Murray S. Pearson, Holger Krutzelmann
  • Patent number: 5071477
    Abstract: The present invention is directed to an improvement in a process for the recovery of gold from refractory sulfidic auriferous ores which comprises oxidizing a slurry of ore with oxygen gas under pressure in the presence of sulfuric acid, neutralizing the oxidized slurry, cyanidizing the neutralized slurry to leach gold therefrom, and recovering gold from the resultant leachate. In accordance with the improved process, the oxidation of the ore slurry is carried out in a manner whereby, after a startup phase during which oxidation is initiated, the amount of sulfuric acid added to the ore slurry is sufficient to insure the oxidation of that portion of the sulfide sulfur in the ore which will allow recovery, by cyanide leaching, of at least about 80% of the gold in the ore. The oxidized slurry can be neutralized without a washing operation.
    Type: Grant
    Filed: May 3, 1990
    Date of Patent: December 10, 1991
    Assignee: American Barrick Resources Corporation of Toronto
    Inventors: Kenneth G. Thomas, Herman J. Pieterse, Robert E. Brewer, Kevin S. Fraser