Patents by Inventor Kevin S. Wenger

Kevin S. Wenger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230028975
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: October 13, 2021
    Publication date: January 26, 2023
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 11193130
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 7, 2021
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20200095592
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: May 30, 2019
    Publication date: March 26, 2020
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 10385345
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: August 20, 2019
    Assignees: Lallemand Hungary Liquidity Management LLC, Universiteit Stellenbosch
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 10294484
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: May 21, 2019
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Lau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20170240906
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 24, 2017
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20160068850
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 10, 2016
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Lau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Patent number: 9206444
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: December 8, 2015
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20140308724
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: February 12, 2014
    Publication date: October 16, 2014
    Applicants: Stellenbosch University, Mascoma Corporation
    Inventors: Elena BREVNOVA, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20130323822
    Abstract: The present invention is directed to a yeast strain, or strains, secreting a full suite, or any subset of that full suite, of enzymes to hydrolyze corn starch, corn fiber, lignocellulose, (including enzymes that hydrolyze linkages in cellulose, hemicellulose, and between lignin and carbohydrates) and to utilize pentose sugars (xylose and arabinose). The invention is also directed to the set of proteins that are well expressed in yeast for each category of enzymatic activity. The resulting strain, or strains can be used to hydrolyze starch and cellulose simultaneously. The resulting strain, or strains can be also metabolically engineered to produce less glycerol and uptake acetate. The resulting strain, or strains can also be used to produce ethanol from granular starch without liquefaction.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 5, 2013
    Applicant: Mascoma Corporation
    Inventors: Elena Brevnova, John E. McBride, Erin Wiswall, Kevin S. Wenger, Nicky Caiazza, Heidi Hau, Aaron Argyros, Frank Agbogbo, Charles F. Rice, Trisha Barrett, John S. Bardsley, Abigail S. Foster, Anne K. Warner, Mark Mellon, Ryan Skinner, Indraneel Shikhare, Riaan Den Haan, Chhayal V. Gandhi, Alan Belcher, Vineet B. Rajgarhia, Allan C. Froehlich, Kristen M. Deleault, Emily Stonehouse, Shital A. Tripathi, Jennifer Gosselin, Yin-Ying Chiu, Haowen Xu
  • Publication number: 20120108798
    Abstract: The present invention is directed to a process of producing substantially pure lignin from lignocellulosic biomass, which comprises: pre-treating a lignocellulosic feedstock to produce a reactive lignin-carbohydrate mixture; biologically-reacting the carbohydrates in the mixture, separating remaining solids from the liquid fermentation products, and drying the resulting solids to yield a substantially pure lignin product. Optionally, the lignin product may be washed and subjected to a second hydrolysis step. Optionally, the lignin product may be further processed by hydrotreating and/or pyrolysis in order to yield desirable products such as fuel additives.
    Type: Application
    Filed: October 16, 2009
    Publication date: May 3, 2012
    Applicant: Mascoma Corporation
    Inventors: Kevin S. Wenger, David A. Hogsett, Michael Ladisch, John Basdsley
  • Patent number: 8076109
    Abstract: The present invention relates to processes for producing a fermentation product, such as ethanol, from milled starch-containing material comprising (a) saccharifying the milled starch-containing material with a glucoamylase having an amino acid sequence shown in SEQ ID NO: 2, or a glucoamylase being at least 70% identical thereto, at a temperature below the initial gelatinization temperature of said starch-containing material, (b) fermenting using a fermenting organism.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: December 13, 2011
    Assignees: Novozymes A/S, Novozymes North America, Inc.
    Inventors: Eric Allain, Kevin S. Wenger, Henrik Bisgard-Frantzen
  • Publication number: 20110183395
    Abstract: The present invention relates to processes for producing a fermentation product, such as ethanol, from milled starch-containing material comprising (a) saccharifying the milled starch-containing material with a glucoamylase having an amino acid sequence shown in SEQ ID NO: 2, or a glucoamylase being at least 70% identical thereto, at a temperature below the initial gelatinization temperature of said starch-containing material, (b) fermenting using a fermenting organism.
    Type: Application
    Filed: April 4, 2011
    Publication date: July 28, 2011
    Applicants: Novozymes A/S, Novozymes North America, Inc.
    Inventors: Eric Allain, Kevin S. Wenger, Henrik Bisgard-Frantzen
  • Patent number: 7855059
    Abstract: A process for the production of a valuable compound, comprising the steps of a) fermentation of a filamentous bacterial or fungal strain (e.g. a Streptomyces strain or an Aspergillus strain) in a fermentation medium wherein a carbohydrate during fermentation is added in a cyclic pulse dosing/pause way, wherein the pulse dosing time is shorter than the pause time and b) recovery of the valuable compound from the fermentation broth.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: December 21, 2010
    Assignee: Novozymes A/S
    Inventors: Kevin S. Wenger, Maria Antonieta Caicedo, Stuart Michael Stocks, Swapnil Bhargava, Mark R. Marten
  • Patent number: 7820419
    Abstract: The present invention relates to a process for producing a fermentation product from starch-containing material, comprising liquefying said starch-containing material with an alpha-amylase; treating with a protease; saccharifying in the presence of a carbohydrate-source generating enzyme; fermenting in the presence of a fermenting organism.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: October 26, 2010
    Assignee: Novozymes North America Inc.
    Inventors: Mads Torry Smith, John Ress, Kevin S. Wenger, Rikke Monica Festersen
  • Publication number: 20090142818
    Abstract: The present invention relates to a process of producing a fermentation product, especially ethanol, from starch-containing material using an alpha-amylase and a carbohydrate-source generating enzyme. The invention also relates to a composition comprising an alpha-amylase and a carbohydrate-source generating enzyme as well as the use such compositions for producing fermentation products.
    Type: Application
    Filed: May 11, 2007
    Publication date: June 4, 2009
    Applicant: Novozymes A/S
    Inventors: Henrik Bisgard-Frantzen, Kevin S. Wenger, Michael Trent Elder, Randy Deinhammer, Joyce Aldridge Craig
  • Publication number: 20080227166
    Abstract: The present invention provides an improved process for producing a fermentation product in a fermentation medium, including ethanol, which process include a fermentation step, comprising subjecting the fermentation medium to at least one surfactant and at least one carbohydrate-source generating enzyme.
    Type: Application
    Filed: January 14, 2005
    Publication date: September 18, 2008
    Applicants: Novozymes A/S, Novozymes North America, Inc.
    Inventors: Eric Allain, Kevin S. Wenger, Henrik Bisgard-Frantzen, Lori Henderson, Carmen Costable
  • Publication number: 20080210541
    Abstract: The present invention relates to an improved process of distilling fermented mash, wherein one or more amylases and/or proteases are added to the fermentation mash before or during distillation.
    Type: Application
    Filed: April 6, 2005
    Publication date: September 4, 2008
    Applicants: Novozymes North America, Inc., Broin and Associates, Inc.
    Inventors: Kevin S. Wenger, Eric Allain, Stephen M. Lewis, John Michael Finck, Debbie Lynn Roth
  • Publication number: 20080138871
    Abstract: The present invention relates to a process for producing a fermentation product from starch-containing material, comprising liquefying said starch-containing material with an alpha-amylase; treating with a protease; saccharifying in the presence of a carbohydrate-source generating enzyme; fermenting in the presence of a fermenting organism.
    Type: Application
    Filed: February 7, 2006
    Publication date: June 12, 2008
    Applicant: Novozymes North America, Inc
    Inventors: Mads Torry Smith, John Ress, Kevin S. Wenger, Rikke Monica Festersen
  • Publication number: 20080113418
    Abstract: The present invention relates to processes for producing a fermentation product, such as ethanol, from milled starch-containing material comprising (a) saccharifying the milled starch-containing material with a glucoamylase having an amino acid sequence shown in SEQ ID NO: 2, or a glucoamylase being at least 70% identical thereto, at a temperature below the initial gelatinization temperature of said starch-containing material, (b) fermenting using a fermenting organism.
    Type: Application
    Filed: January 14, 2005
    Publication date: May 15, 2008
    Applicants: NOVOZYMES A/S, NOVOZYMES NORTH AMERICA, INC.
    Inventors: Eric Allain, Kevin S. Wenger, Henrik Bisgaard-Frantzen