Patents by Inventor Kevin Sallee

Kevin Sallee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11904878
    Abstract: A vehicle control system for a vehicle may include a controller, a single pedal and a torque control module. The controller may be operably coupled to components and/or sensors of the vehicle to receive information indicative of operational intent of an operator of the vehicle and information indicative of vehicle status. The single pedal may be configured to provide the information indicative of operational intent. The torque control module may be configured to generate both a propulsive torque request and a braking torque request based on the information indicative of the operational intent and the information indicative of vehicle status.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: February 20, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Michael Edward Brewer, Kevin Sallee
  • Publication number: 20230278543
    Abstract: A method of providing automated application of turn radius reduction in a driver assist mode may include receiving steering wheel angle and wheel speed information to determine a target wheel slip during a turn. The method may further include comparing the target wheel slip to a current wheel slip to determine a slip error, and applying braking torque to an inside wheel based on the slip error to reduce the turn radius.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Inventors: Kevin Sallee, Michael Edward Brewer
  • Patent number: 11685367
    Abstract: A method of providing automated application of turn radius reduction in a driver assist mode may include receiving steering wheel angle and wheel speed information to determine a target wheel slip during a turn. The method may further include comparing the target wheel slip to a current wheel slip to determine a slip error, and applying braking torque to an inside wheel based on the slip error to reduce the turn radius.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: June 27, 2023
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Kevin Sallee, Michael Edward Brewer
  • Publication number: 20220219676
    Abstract: A vehicle control system for reducing turn radius of a vehicle may include a controller and a torque control module operably coupled to the controller and to front wheels of a front axle of the vehicle and rear wheels of a rear axle of the vehicle. The controller may also be operably coupled to components and/or sensors of the vehicle to receive information including vehicle wheel speed and steering wheel angle. The torque control module may be operable, responsive to control by the controller, to apply a negative torque to an inside rear wheel during a turn and apply a positive torque to the front axle during the turn to compensate for the negative torque applied to the inside rear wheel to reduce the turn radius based on the steering wheel angle and the vehicle speed.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 14, 2022
    Inventors: Bang Cao, Zubair Feroz, Shubham Dixit, Jose Velazquez Alcantar, Kevin Sallee
  • Publication number: 20220073054
    Abstract: A method of providing automated application of turn radius reduction in a driver assist mode may include receiving steering wheel angle and wheel speed information to determine a target wheel slip during a turn. The method may further include comparing the target wheel slip to a current wheel slip to determine a slip error, and applying braking torque to an inside wheel based on the slip error to reduce the turn radius.
    Type: Application
    Filed: September 9, 2020
    Publication date: March 10, 2022
    Inventors: Kevin Sallee, Michael Edward Brewer
  • Publication number: 20220055642
    Abstract: A vehicle control system for a vehicle may include a controller, a single pedal and a torque control module. The controller may be operably coupled to components and/or sensors of the vehicle to receive information indicative of operational intent of an operator of the vehicle and information indicative of vehicle status. The single pedal may be configured to provide the information indicative of operational intent. The torque control module may be configured to generate both a propulsive torque request and a braking torque request based on the information indicative of the operational intent and the information indicative of vehicle status.
    Type: Application
    Filed: August 18, 2020
    Publication date: February 24, 2022
    Inventors: Michael Edward Brewer, Kevin Sallee
  • Patent number: 10821948
    Abstract: A vehicle includes a user-actuatable switch and a controller. When the switch is actuated, the controller is adapted to effect a regenerative braking command to actuate a regenerative brake system when a vehicle speed is above a threshold speed, and to effect a parking brake command to actuate an electric park brake when the vehicle speed is less than or equal to the threshold speed.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: November 3, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Moses Alexander Fridman, Kevin Sallee, Dale Scott Crombez
  • Publication number: 20190135249
    Abstract: A vehicle includes a user-actuatable switch and a controller. When the switch is actuated, the controller is adapted to effect a regenerative braking command to actuate a regenerative brake system when a vehicle speed is above a threshold speed, and to effect a parking brake command to actuate an electric park brake when the vehicle speed is less than or equal to the threshold speed.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 9, 2019
    Inventors: Moses Alexander Fridman, Kevin Sallee, Dale Scott Crombez
  • Patent number: 9744950
    Abstract: Performance electric parking brake controllers determine braking control signals for a performance electric parking brake system based on a position of a parking brake lever. A parking brake lever has a first rate of resistance associated with movement in a first direction away from a neutral position and a second rate of resistance associated with movement in a second direction away from the neutral position opposite the first direction. The first and second rates of resistance are different. A controller is configured to electromechanically actuate rear brake calipers of the vehicle in response to a first set of operating conditions of the vehicle, to hydraulically actuate front brake calipers and the rear brake calipers of the vehicle in response to a second set of operating conditions of the vehicle, and to hydraulically actuate only the rear brake calipers in response to a third set of operating conditions of the vehicle.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: August 29, 2017
    Assignee: FORD GLOBAL TECHNOLOGIES
    Inventors: Brian Marvin Lemmer, Curtis Hargitt, Greg David Folta, Chad Michael Korte, Scott Mlynarczyk, Alexander Ferencz, Kevin Sallee, Jason St. John