Patents by Inventor Kevin Scott Smith

Kevin Scott Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11970287
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: April 30, 2024
    Assignee: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20240075326
    Abstract: Systems for improving fire safety in agricultural machinery are configured for detecting, at least partially controlling, and/or suppressing adverse fire-related conditions. The adverse fire-related conditions can include sparks, embers, and/or flames in the agricultural machinery.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Inventors: Robert A. Duncan, Kevin Scott Smith, Terry A. Spencer
  • Publication number: 20240069525
    Abstract: Historical in-process machining information can be used to make machining process parameter recommendations. The disclosed systems and methods enable continuous learning for machining parameter selection using aggregated in-process machining information. The systems and methods save in-process machining data in a database using a standardized format, use data augmentation outlier detection, aggregation, and clustering algorithms to make machining process parameter recommendations and expected cut time predictions based on user inputs. The system can include a front-end dashboard to facilitate visualization and interpret results.
    Type: Application
    Filed: August 29, 2023
    Publication date: February 29, 2024
    Inventors: Jaydeep Karandikar, Junghoon Chae, Kevin Scott Smith, Tony Schmitz, Chad Steed
  • Patent number: 11844969
    Abstract: Systems for improving fire safety in agricultural machinery are configured for detecting, at least partially controlling, and/or suppressing adverse fire-related conditions. The adverse fire-related conditions can include sparks, embers, and/or flames in the agricultural machinery.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: December 19, 2023
    Assignee: Suppression Technologies, Inc.
    Inventors: Robert A Duncan, Kevin Scott Smith, Terry A. Spencer
  • Publication number: 20230082512
    Abstract: Systems for improving fire safety in agricultural machinery are configured for detecting, at least partially controlling, and/or suppressing adverse fire-related conditions. The adverse fire-related conditions can include sparks, embers, and/or flames in the agricultural machinery.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 16, 2023
    Inventors: Robert A. Duncan, Kevin Scott Smith, Terry A. Spencer
  • Patent number: 11534635
    Abstract: Systems for improving fire safety in agricultural machinery are configured for detecting, at least partially controlling, and/or suppressing adverse fire-related conditions. The adverse fire-related conditions can include sparks, embers, and/or flames in the agricultural machinery.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: December 27, 2022
    Assignee: Suppression Technologies, Inc.
    Inventors: Robert A. Duncan, Kevin Scott Smith, Terry A. Spencer
  • Publication number: 20210402234
    Abstract: Systems for improving fire safety in agricultural machinery are configured for detecting, at least partially controlling, and/or suppressing adverse fire-related conditions. The adverse fire-related conditions can include sparks, embers, and/or flames in the agricultural machinery.
    Type: Application
    Filed: November 2, 2018
    Publication date: December 30, 2021
    Inventors: Robert A. Duncan, Kevin Scott Smith, Terry A. Spencer
  • Patent number: 9375818
    Abstract: A manufacturing method, including: given a predetermined finished part geometry, providing a sacrificial structure preform that simultaneously contains the finished part geometry, minimizes material that must be removed from the sacrificial structure preform to achieve the finished part geometry during machining, and has a sufficient stiffness to resist a machining force that will be applied during machining without allowing the finished part geometry to be compromised; and machining the sacrificial structure preform to achieve the finished part geometry. The manufacturing method also includes preliminarily estimating a stiffness of the finished part geometry and the machining force that will be applied during machining.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 28, 2016
    Assignee: The University of North Carolina at Charlotte
    Inventors: Kevin Scott Smith, Robert G. Wilhelm, Brian S. Dutterer
  • Publication number: 20140000079
    Abstract: A manufacturing method, including: given a predetermined finished part geometry, providing a sacrificial structure preform that simultaneously contains the finished part geometry, minimizes material that must be removed from the sacrificial structure preform to achieve the finished part geometry during machining, and has a sufficient stiffness to resist a machining force that will be applied during machining without allowing the finished part geometry to be compromised; and machining the sacrificial structure preform to achieve the finished part geometry.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 2, 2014
    Applicant: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Kevin Scott Smith, Robert G. Wilhelm, Brian S. Dutterer
  • Patent number: 8545142
    Abstract: The present invention relates generally to deformation machining systems and methods that combine, in a single machine tool setup, the machining of thin structures and single point incremental forming (SPIF), such that novel part geometries and enhanced material properties may be obtained that are not achievable using conventional machining or forming systems and methods, individually or collectively. Important to many applications, lighter weight parts may be produced at lower cost using a conventional 3-axis computer numerically controlled (CNC) machine tool or the like, instead of the conventional 5-axis CNC machine tool or the like that is typically required.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: October 1, 2013
    Assignees: University of North Carolina at Charlotte, Clemson University, Northwestern University
    Inventors: Kevin Scott Smith, Bethany A. Woody, John C. Ziegert, Jian Cao
  • Patent number: 8432119
    Abstract: Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: April 30, 2013
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: William E. Barkman, Edwin F. Babelay, Jr., Kevin Scott Smith, Thomas S. Assaid, Justin T. McFarland, David A. Tursky, Bethany Woody, David Adams
  • Patent number: 8401691
    Abstract: The present invention provides dynamic metrology methods and systems for: periodically determining an actual position of one or more of a machine and a tool with respect to a workpiece using one or more laser interferometers; tracking a tracked position of the one or more of the machine and the tool with respect to the workpiece using one or more accelerometers; and altering a controlled position of the one or more of the machine and the tool with respect to the workpiece when either the actual position or the tracked position of the one or more of the machine and the tool with respect to the workpiece diverges from a desired position of one or more of the machine and the tool with respect to the workpiece.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: March 19, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: Kevin Scott Smith, Robert J. Hocken
  • Patent number: 8313271
    Abstract: The present invention provides a method for machining a part from a workpiece. The workpiece is divided into a plurality of sectors and a plurality of fiducials are disposed within each sector. The separation distance between each fiducial is then calibrated to a workpiece distance unit. The present invention then includes the steps of a) positioning the workpiece into the desired position relative to a cutting machine; b) calibrating the cutting machine to the workpiece distance units of one sector; c) cutting one sector with the calibrated cutting machine; d) repeating steps a-c until the part is completed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 20, 2012
    Assignee: University of North Carolina at Charlotte
    Inventor: Kevin Scott Smith
  • Patent number: 8240234
    Abstract: The present invention provides methods and systems for chip breaking, controlling cutting tool wear, and the like in turning, boring, and other applications, including: engaging a workpiece with a cutting tool in a feed direction along a toolpath, superimposing an oscillation in the feed direction on the toolpath, and dynamically or non-dynamically varying the oscillation superimposed in the feed direction on the toolpath such that interrupted cuts and chips of a predetermined length or less are produced. These systems take full advantage of computer numerical control (CNC) methodologies.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 14, 2012
    Assignees: University of North Carolina at Charlotte, Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Bethany A. Woody, Kevin Scott Smith, David J. Adams, William E. Barkman, Edwin F. Babelay, Jr.
  • Patent number: 8230572
    Abstract: Systems and methods for creating assemblies are described. One method described comprises providing a first element at a first temperature, providing a second element at a second temperature lower than the first temperature, coupling the first and second elements to create an assembly, and changing the first temperature to a third temperature, thereby preloading and interlocking the assembly. The first element comprises a first dimension at the first temperature. The second element comprises a second dimension lesser than the first dimension at the second temperature. The first element comprises a third dimension at the third temperature lesser than the first dimension.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: July 31, 2012
    Inventors: Matthew A. Davies, Kevin Scott Smith
  • Publication number: 20110254496
    Abstract: Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 20, 2011
    Applicants: THE UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE, BABCOCK & WILCOX TECHNICAL SERVICES Y-12, LLC
    Inventors: William E. Barkman, Edwin F. Babelay, JR., Kevin Scott Smith, Thomas S. Assaid, Justin T. McFarland, David A. Tursky
  • Publication number: 20110022220
    Abstract: The present invention provides dynamic metrology methods and systems for: periodically determining an actual position of one or more of a machine and a tool with respect to a workpiece using one or more laser interferometers; tracking a tracked position of the one or more of the machine and the tool with respect to the workpiece using one or more accelerometers; and altering a controlled position of the one or more of the machine and the tool with respect to the workpiece when either the actual position or the tracked position of the one or more of the machine and the tool with respect to the workpiece diverges from a desired position of one or more of the machine and the tool with respect to the workpiece.
    Type: Application
    Filed: April 27, 2009
    Publication date: January 27, 2011
    Applicant: UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE
    Inventors: Kevin Scott Smith, Robert J. Hocken
  • Publication number: 20100299907
    Abstract: Systems and methods for creating assemblies are described. One method described comprises providing a first element at a first temperature, providing a second element at a second temperature lower than the first temperature, coupling the first and second elements to create an assembly, and changing the first temperature to a third temperature, thereby preloading and interlocking the assembly. The first element comprises a first dimension at the first temperature. The second element comprises a second dimension lesser than the first dimension at the second temperature. The first element comprises a third dimension at the third temperature lesser than the first dimension.
    Type: Application
    Filed: August 9, 2010
    Publication date: December 2, 2010
    Applicant: University of North Carolina at Charlotte
    Inventors: Matthew A. Davies, Kevin Scott Smith
  • Patent number: 7770278
    Abstract: Systems and methods for creating assemblies are described. One method described comprises providing a first element at a first temperature, providing a second element at a second temperature lower than the first temperature, coupling the first and second elements to create an assembly, and changing the first temperature to a third temperature, thereby preloading and interlocking the assembly. The first element comprises a first dimension at the first temperature. The second element comprises a second dimension lesser than the first dimension at the second temperature. The first element comprises a third dimension at the third temperature lesser than the first dimension.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 10, 2010
    Assignee: University of North Carolina at Charlotte
    Inventors: Matthew A. Davies, Kevin Scott Smith
  • Publication number: 20090226272
    Abstract: The present invention relates generally to deformation machining systems and methods that combine, in a single machine tool setup, the machining of thin structures and single point incremental forming (SPIF), such that novel part geometries and enhanced material properties may be obtained that are not achievable using conventional machining or forming systems and methods, individually or collectively. Important to many applications, lighter weight parts may be produced at lower cost using a conventional 3-axis computer numerically controlled (CNC) machine tool or the like, instead of the conventional 5-axis CNC machine tool or the like that is typically required.
    Type: Application
    Filed: March 6, 2009
    Publication date: September 10, 2009
    Inventors: Kevin Scott SMITH, Bethany A. Woody, John C. Ziegert, Jian Cao