Patents by Inventor Kevin Solomon

Kevin Solomon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11912745
    Abstract: Proteins, nucleic acids encoding the proteins, compositions comprising the proteins, and methods are provided. The proteins have the ability to be self-targeted to ICAM-1 and, if desired, enzymatically-released at acidic pH. The ICAM-1-targeting peptides are provided as single copies or multiples repeats, and can be separated by linkers from the enzyme segment, from which the ICAM-1 targeting peptides can be released, if desired, at acidic pH. These fusion proteins enhance the activity of the enzyme segment within or liberated from the fusion protein, and provide increased recognition and targeting of diseased organs, transport from the bloodstream across the endothelium into said diseased organ, and intracellular uptake and lysosomal trafficking by cells in them, both in peripheral tissues and the central nervous system. Representative nucleotide and amino acid sequences of these fusion proteins, as well as in vitro, cellular, and in vivo animal data are provided.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: February 27, 2024
    Assignee: University of Maryland, College Park
    Inventors: Silvia Muro, Jing Chen, Melani Solomon, Kevin Gray
  • Patent number: 11820988
    Abstract: Methods and nucleic acid sequences for the synthesis of biotemplates in a non-plant based expression system are provided. Such biotemplates include Barley stripe mosaic virus viral-like particles (BSMV-VLPs) that are capable of self-assembly due to being operatively linked with an origin of self-assembly with the Barley stripe mosaic virus capsid protein (BSMV-CP). Also provided are BSMV-VLPs that are capable of self-assembly due one or more site-directed mutations on the BSMV-CP, and BSMV-VLPs that exhibit enhanced stability due to such site-directed mutation(s).
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 21, 2023
    Assignee: Purdue Research Foundation
    Inventors: Kevin Solomon, Kok Zhi Lee, Yu-Hsuan Lee, Michael Harris, Loretta Sue Loesch-Fries
  • Publication number: 20210269492
    Abstract: Provided herein are novel proteins and protein domains from newly discovered anaerobic fungal species. The anaerobic fungal species have unique enzymatic capabilities, including the ability to digest diverse lignocellulosic biomass feedstocks and to synthesize secondary metabolites. The scope of the invention encompasses novel engineered proteins comprising glycoside hydrolase enzymes, dockerin domains, carbohydrate binding domains, and polyketide synthase enzymes. The invention further encompasses artificial cellulosomes comprising novel proteins and domains of the invention. The scope of the invention further includes novel nucleic acid sequences coding for the engineered proteins of the invention, and methods of using such engineered organisms to degrade lignocellulosic biomass and to create polyketides.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Applicant: The Regents of the University of California
    Inventors: Michelle O'Malley, Kevin Solomon, Charles Haitjema
  • Patent number: 11021524
    Abstract: Provided herein are novel proteins and protein domains from newly discovered anaerobic fungal species. The anaerobic fungal species have unique enzymatic capabilities, including the ability to digest diverse lignocellulosic biomass feedstocks and to synthesize secondary metabolites. The scope of the invention encompasses novel engineered proteins comprising glycoside hydrolase enzymes, dockerin domains, carbohydrate binding domains, and polyketide synthase enzymes. The invention further encompasses artificial cellulosomes comprising novel proteins and domains of the invention. The scope of the invention further includes novel nucleic acid sequences coding for the engineered proteins of the invention, and methods of using such engineered organisms to degrade lignocellulosic biomass and to create polyketides.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: June 1, 2021
    Assignee: The Regents of the University of California
    Inventors: Michelle O'Malley, Kevin Solomon, Charles Haitjema
  • Publication number: 20200299338
    Abstract: Provided herein are novel proteins and protein domains from newly discovered anaerobic fungal species. The anaerobic fungal species have unique enzymatic capabilities, including the ability to digest diverse lignocellulosic biomass feedstocks and to synthesize secondary metabolites. The scope of the invention encompasses novel engineered proteins comprising glycoside hydrolase enzymes, dockerin domains, carbohydrate binding domains, and polyketide synthase enzymes. The invention further encompasses artificial cellulosomes comprising novel proteins and domains of the invention. The scope of the invention further includes novel nucleic acid sequences coding for the engineered proteins of the invention, and methods of using such engineered organisms to degrade lignocellulosic biomass and to create polyketides.
    Type: Application
    Filed: June 10, 2020
    Publication date: September 24, 2020
    Applicant: The Regents of the University of California
    Inventors: Michelle O'Malley, Kevin Solomon, Charles Haitjema
  • Publication number: 20200277613
    Abstract: Methods and nucleic acid sequences for the synthesis of biotemplates in a non-plant based expression system are provided. Such biotemplates include Barley stripe mosaic virus viral-like particles (BSMV-VLPs) that are capable of self-assembly due to being operatively linked with an origin of self-assembly with the Barley stripe mosaic virus capsid protein (BSMV-CP). Also provided are BSMV-VLPs that are capable of self-assembly due one or more site-directed mutations on the BSMV-CP, and BSMV-VLPs that exhibit enhanced stability due to such site-directed mutation(s).
    Type: Application
    Filed: February 28, 2020
    Publication date: September 3, 2020
    Inventors: Kevin Solomon, Kok Zhi Lee, Yu-Hsuan Lee, Michael Harris, Loretta Sue Loesch-Fries
  • Patent number: 10717768
    Abstract: Provided herein are novel proteins and protein domains from newly discovered anaerobic fungal species. The anaerobic fungal species have unique enzymatic capabilities, including the ability to digest diverse lignocellulosic biomass feedstocks and to synthesize secondary metabolites. The scope of the invention encompasses novel engineered proteins comprising glycoside hydrolase enzymes, dockerin domains, carbohydrate binding domains, and polyketide synthase enzymes. The invention further encompasses artificial cellulosomes comprising novel proteins and domains of the invention. The scope of the invention further includes novel nucleic acid sequences coding for the engineered proteins of the invention, and methods of using such engineered organisms to degrade lignocellulosic biomass and to create polyketides.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 21, 2020
    Assignee: The Regents of the University of California
    Inventors: Michelle O'Malley, Kevin Solomon, Charles Haitjema
  • Patent number: 10676766
    Abstract: The invention relates to an engineered eukaryotic microorganism into which a gene encoding an acyl-CoA dehydrogenase is introduced and a method for producing methacrylic acid esters such as MMA and MMA-CoA and precursors thereof using the microorganism.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: June 9, 2020
    Assignees: The Regents of the University of California, Mitsubishi Chemical Corporation
    Inventors: Michelle O'Malley, Kevin Solomon, Wataru Mizunashi, Fujio Yu
  • Publication number: 20180362597
    Abstract: Provided herein are novel proteins and protein domains from newly discovered anaerobic fungal species. The anaerobic fungal species have unique enzymatic capabilities, including the ability to digest diverse lignocellulosic biomass feedstocks and to synthesize secondary metabolites. The scope of the invention encompasses novel engineered proteins comprising glycoside hydrolase enzymes, dockerin domains, carbohydrate binding domains, and polyketide synthase enzymes. The invention further encompasses artificial cellulosomes comprising novel proteins and domains of the invention. The scope of the invention further includes novel nucleic acid sequences coding for the engineered proteins of the invention, and methods of using such engineered organisms to degrade lignocellulosic biomass and to create polyketides.
    Type: Application
    Filed: December 8, 2016
    Publication date: December 20, 2018
    Applicant: The Regents of the University of California
    Inventors: Michelle O'Malley, Kevin Solomon, Charles Haitjema
  • Publication number: 20180346942
    Abstract: The invention relates to an engineered eukaryotic microorganism into which a gene encoding an acyl-CoA dehydrogenase is introduced and a method for producing methacrylic acid esters such as MMA and MMA-CoA and precursors thereof using the microorganism.
    Type: Application
    Filed: April 20, 2018
    Publication date: December 6, 2018
    Applicants: The Regents of the University of California, Mitsubishi Chemical Corporation
    Inventors: Michelle O'MALLEY, Kevin SOLOMON, Wataru MIZUNASHI, Fujio YU
  • Patent number: 8835138
    Abstract: Aspects of the invention relate to the design and construction of Metabolite Valves, such as Glucose Valves, that can be used to divert metabolites from endogenous pathways toward alternative pathways in a cell.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 16, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Kevin Solomon, Tae Seok Moon, Kristala Lanett Jones Prather
  • Publication number: 20130071894
    Abstract: Aspects of the invention relate to the design and construction of Metabolite Valves, such as Glucose Valves, that can be used to divert metabolites from endogenous pathways toward alternative pathways in a cell.
    Type: Application
    Filed: March 30, 2011
    Publication date: March 21, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Kevin Solomon, Tae Seok Moon, Kristala Lanett Jones Prather