Patents by Inventor Kevin Stalsberg

Kevin Stalsberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7545115
    Abstract: The invention proposes a system for driving a compressor, comprising an induction motor (2) for driving the compressor (3), said induction motor including a squirrel cage rotor, and a controller (1) for controlling the induction motor, said controller comprising a memory for storing drive patterns for driving the induction motor, a first frequency generation means for generating a field frequency based on a field command and/or a second field generation means for generating a voltage frequency based on a voltage command, wherein a drive pattern in extracted from the memory based on the generated frequency or frequencies. Alternatively, the invention proposes a system for driving a compressor, comprising an induction motor (2) for driving the compressor (3), said induction motor including a squirrel cage rotor, and a controller (1) for controlling the induction motor, wherein the controller is adapted to distinguish between a steady state and a transient state of the induction motor.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: June 9, 2009
    Assignee: Honeywell International Inc.
    Inventors: Pierre Barthelet, Nicolas Devulder, Chris Greentree, Cedric Lorant, Stanislaus Pouget, Kevin Stalsberg, Alain Wesquet
  • Publication number: 20070251236
    Abstract: The invention proposes a system for driving a compressor, comprising an induction motor (2) for driving the compressor (3), said induction motor including a squirrel cage rotor, and a controller (1) for controlling the induction motor, said controller comprising a memory for storing drive patterns for driving the induction motor, a first frequency generation means for generating a field frequency based on a field command and/or a second field generation means for generating a voltage frequency based on a voltage command, wherein a drive pattern in extracted from the memory based on the generated frequency or frequencies. Alternatively, the invention proposes a system for driving a compressor, comprising an induction motor (2) for driving the compressor (3), said induction motor including a squirrel cage rotor, and a controller (1) for controlling the induction motor, wherein the controller is adapted to distinguish between a steady state and a transient state of the induction motor.
    Type: Application
    Filed: February 5, 2004
    Publication date: November 1, 2007
    Inventors: Pierre Barthelet, Nicolas Devulder, Chris Greentree, Cedric Lorant, Stanislaus Pouget, Kevin Stalsberg, Alain Wesquet
  • Publication number: 20070150015
    Abstract: A cardiac device is described with the capability of detecting cardiac ischemia using multiple sensing modalities. The device may be configured to modify its behavior in delivering therapies to treat bradycardia or tachyarrhythmias in response to detection of cardiac ischemia.
    Type: Application
    Filed: December 23, 2005
    Publication date: June 28, 2007
    Inventors: Yi Zhang, Aaron McCabe, Kevin Stalsberg, Kent Lee, Marina Brockway, Joseph Pastore, Allan Shuros
  • Publication number: 20070078489
    Abstract: The waveform morphology of a propagated pacing response signal may be adjusted to achieve a waveform morphology that enhances cardiac pacing response determination. One or more pacing intervals may be adjusted to achieve at least one cardiac pacing response waveform morphology that enhances determination of the cardiac pacing response. The heart is paced using the one or more adjusted pacing intervals and the cardiac response to the pacing is determined. The one or more adjusted pacing intervals may include an atrioventricular pacing delay, an interatrial pacing delay, an interventricular pacing delay, or other inter-chamber or inter-site pacing delays. Adjusting the one or more pacing intervals may be used to increase a difference between a first waveform morphology associated with multi-chamber capture and a second waveform morphology associated with single chamber capture.
    Type: Application
    Filed: October 3, 2005
    Publication date: April 5, 2007
    Inventors: Scott Meyer, Yanting Dong, Kevin Stalsberg, Alok Sathaye
  • Publication number: 20070021793
    Abstract: Approaches for adjusting the pacing energy delivered by a pacemaker are provided. Adjusting the pacing energy involves performing a plurality of capture threshold tests, each capture threshold test measuring a capture threshold of the heart. One or more measured captured thresholds are selected, including at least one capture threshold that is higher relative to other measured capture thresholds acquired by the plurality of capture threshold tests. The pacing energy is adjusted based on the one or more selected capture thresholds.
    Type: Application
    Filed: July 19, 2005
    Publication date: January 25, 2007
    Inventors: John Voegele, Clayton Foster, David Yost, Scott Meyer, Yanting Dong, Kevin Stalsberg, Derek Bohn, Eric Enrooth
  • Publication number: 20060247694
    Abstract: Multi-chamber pacing may result in capture of one chamber, capture of multiple chambers, fusion, or non-capture. Approaches for detecting various capture conditions during multi-chamber pacing are described. Pacing pulses are delivered to left and right heart chambers during a cardiac cycle. A cardiac electrogram signal is sensed following the delivery of the pacing pulses. Left chamber capture only, right chamber capture only, and bi-chamber capture may be distinguished based on characteristics of the cardiac electrogram signal. Multi-chamber capture detection may be implemented using detection windows having dimensions of time and amplitude. The detection windows are associated with expected features, such as expected signal peaks, under a particular capture condition. The cardiac electrogram signal features are compared to detection windows to determine the capture condition.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Yanting Dong, Scott Meyer, Kevin Stalsberg
  • Publication number: 20060247691
    Abstract: Cardiac devices and methods involve the detection of cardiac signals features in adjacent classification intervals. Portions of the cardiac signal features detected in adjacent classification intervals are associated and are used to classify the cardiac response to a pacing pulse. Associating the portions of the cardiac signal features may be based on expected signal morphology.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Scott Meyer, Yanting Dong, Kevin Stalsberg
  • Publication number: 20060247695
    Abstract: Methods and systems for detecting noise in cardiac pacing response classification processes involve determining that a cardiac response classification is possibly erroneous if unexpected signal content is detected. The unexpected signal content may comprise signal peaks that have polarity opposite to the polarity of peaks used to determine the cardiac response to pacing. Fusion/noise management processes include pacing at a relatively high energy level until capture is detected after a fusion, indeterminate or possibly erroneous pacing response classification is made. The relatively high energy pacing pulses may be delivered until capture is detected or until a predetermined number of paces are delivered.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Kevin Stalsberg, Yanting Dong, Scott Meyer, John Voegele, Derek Bohn, Eric Enrooth, Clayton Foster, David Yost
  • Publication number: 20060247693
    Abstract: Cardiac devices and methods discriminate non-captured intrinsic beats during evoked response detection and classification by comparing the features of a post-pace cardiac signal with expected features associated with a non-captured response with intrinsic activation. Detection of a non-captured response with intrinsic activation may be based on the peak amplitude and timing of the cardiac signal. The methods may be used to discriminate between a fusion or capture beat and a non-captured intrinsic beat. Discriminating between possible cardiac responses to the pacing pulse may be useful, for example, during automatic capture verification and/or a capture threshold test.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Yanting Dong, Scott Meyer, Kevin Stalsberg
  • Publication number: 20060247696
    Abstract: Cardiac devices and methods provide adaptation of detection windows used to determine a cardiac response to pacing. Adapting a detection window involves sensing a cardiac signal indicative of a particular type of cardiac pacing response, and detecting a feature of the sensed cardiac signal. The cardiac response detection window associated with the type of cardiac pacing response is preferentially adjusted based on the location of the detected cardiac feature. Preferential adjustment of the detection window may involve determining a direction of change between the detection window and the detected feature. The detection window may be adapted more aggressively in a more preferred direction and less aggressively in a less preferred direction.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 2, 2006
    Inventors: Kevin Stalsberg, Yanting Dong, Scott Meyer, Eric Enrooth, Derek Bohn