Patents by Inventor Kevin T. Hamer

Kevin T. Hamer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7354631
    Abstract: This invention includes chemical vapor deposition apparatus, methods of chemical vapor depositing an amorphous carbon comprising layer on a substrate, and methods of chemical vapor depositing at least one of Si3N4 and SixOyNz on a substrate. In certain implementations, a gas output manifold having at least one gas output to a deposition chamber and at least three gas inputs is utilized. In certain implementations, a remote plasma generator is utilized. In certain implementations, at least one cleaning gas input line feeds the remote plasma generator. In certain implementations, the at least one cleaning gas input line includes an amorphous carbon cleaning gas input and an Si3N4 or SixOyNz cleaning gas input.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Jeff N. Fuss, Kevin T. Hamer, Zhiping Yin
  • Patent number: 7312857
    Abstract: A method and system are presented for monitoring the optical emissions associated with a plasma used in integrated circuit fabrication. The optical emissions may be processed by an optical spectrometer to obtain a spectrum. The spectrum may be analyzed to determine the presence of particular disassociated species which are indicative of the presence of a suitable plasma and which may be desired for a deposition, etching, or cleaning process.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 25, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Kevin T. Hamer
  • Patent number: 7192487
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: March 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Patent number: 6950178
    Abstract: A method and system are presented for monitoring the optical emissions associated with a plasma used in integrated circuit fabrication. The optical emissions are processed by an optical spectrometer to obtain a spectrum. The spectrum is analyzed to determine the presence of particular disassociated species which are indicative of the presence of a suitable plasma and which are desired for a deposition, etching, or cleaning process.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: September 27, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, Kevin T. Hamer
  • Patent number: 6936547
    Abstract: The present invention is generally directed to a novel gas delivery system for various deposition processes, and various methods of using same. In one illustrative embodiment, a deposition tool comprises a process chamber, a wafer stage adapted for holding a wafer positioned therein, and a gas delivery system positioned in the chamber above a position where a plasma will be generated in the chamber, wherein substantially all of a reactant gas is delivered into the chamber via the gas delivery system. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed so as to cover substantially all of an area defined by an upper surface of the wafer.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: August 30, 2005
    Assignee: Micron Technology, Inc..
    Inventors: Weimin Li, Neal R. Rueger, Li Li, Ross S. Dando, Kevin T. Hamer, Allen P. Mardian
  • Patent number: 6849133
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: February 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Patent number: 6800172
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Publication number: 20040144315
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Application
    Filed: October 28, 2003
    Publication date: July 29, 2004
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Publication number: 20040144310
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Application
    Filed: November 6, 2003
    Publication date: July 29, 2004
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Publication number: 20040083972
    Abstract: The present invention is generally directed to a novel gas delivery system for various deposition processes, and various methods of using same. In one illustrative embodiment, a deposition tool comprises a process chamber, a wafer stage adapted for holding a wafer positioned therein, and a gas delivery system positioned in the chamber above a position where a plasma will be generated in the chamber, wherein substantially all of a reactant gas is delivered into the chamber via the gas delivery system. In another illustrative embodiment, the reactant gas exiting the gas delivery system is directed so as to cover substantially all of an area defined by an upper surface of the wafer.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Inventors: Weimin Li, Neal R. Rueger, Li Li, Ross S. Dando, Kevin T. Hamer, Allen P. Mardian, Gurtej S. Sandhu
  • Patent number: 6677250
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Publication number: 20030159780
    Abstract: A semiconductor substrate processor includes a substrate transfer chamber and a plurality of substrate processing chambers connected therewith. An interfacial structure is received between at least one of the processing chambers and the transfer chamber. The interfacial structure includes a substantially non-metallic, thermally insulative mass of material interposed between the one processing chamber and the transfer chamber. The mass is of sufficient volume to effectively reduce heat transfer from the processing chamber to the transfer chamber than would otherwise occur in the absence of said mass of material. An interfacial structure includes a body having a substrate passageway extending therethrough. The passageway includes walls at least a portion of which are substantially metallic. The body includes material peripheral of the walls which is substantially non-metallic and thermally insulative. The substantially non-metallic material has mounting openings extending at least partially therein.
    Type: Application
    Filed: February 22, 2002
    Publication date: August 28, 2003
    Inventors: Craig M. Carpenter, Ross S. Dando, Allen P. Mardian, Kevin T. Hamer, Raynald B. Cantin, Philip H. Campbell, Kimberly R. Tschepen, Randy W. Mercil
  • Publication number: 20030033980
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Application
    Filed: August 17, 2001
    Publication date: February 20, 2003
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer