Patents by Inventor Kevin W. Gotrik

Kevin W. Gotrik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230013219
    Abstract: A method for making a dental appliance configured to position at least one tooth of a patient includes printing a hardenable liquid resin composition on a major surface of a polymeric material to form a pattern of discrete unhardened liquid regions thereon; at least partially hardening the unhardened liquid regions to form a corresponding array of structures on the major surface of the polymeric material, wherein the structures have a characteristic cross-sectional dimension of about 25 microns to about 1 mm, and a feature spacing of about 100 microns to about 2000 microns; and forming a plurality of cavities in the polymeric material to form the dental appliance including an arrangement of cavities configured to receive one or more teeth.
    Type: Application
    Filed: December 29, 2020
    Publication date: January 19, 2023
    Inventors: Bhaskar V. Velamakanni, Kevin T. Reddy, Matthew S. Stay, Matthew R.D. Smith, Kevin W. Gotrik, Mikhail L. Pekurovsky, Scott J. Jones, Ta-Hua Yu, Thomas J. Metzler
  • Patent number: 11550183
    Abstract: A light control film comprises a light input surface and a light output surface opposite the light input surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface, wherein the absorptive regions comprise a core having a first concentration, C1, of a light absorbing material sandwiched between cladding layers having a second concentration, C2, of the light absorbing material, wherein C2<C1, and wherein the cores have an aspect ratio of at least 20.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 10, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel J. Schmidt, Kevin W. Gotrik, Nicholas A. Johnson, Raymond J. Kenney, Caleb T. Nelson, Kenneth A. Epstein
  • Patent number: 11518080
    Abstract: There is provided a method of making a curved barrier film, including: depositing a barrier layer between a first organic layer and a second organic layer to form a barrier film; and thermoforming or vacuum-forming the barrier film from a flat barrier film to a curved barrier film; wherein the barrier film includes the barrier layer having two opposing major surfaces, wherein the barrier layer includes buckling deformations and non-buckling regions; the first organic layer in direct contact with one of the opposing major surfaces of the barrier layer; and the second organic layer in direct contact with the other of the opposing major surfaces of the barrier layer.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: December 6, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: David J. Rowe, Christopher S. Lyons, Kevin W. Gotrik, Gregg A. Ambur
  • Publication number: 20220365260
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer and a discontinuous binder-borne reflective layer that is provided by a portion of a fractured binder-borne reflective sheet.
    Type: Application
    Filed: September 29, 2020
    Publication date: November 17, 2022
    Inventors: Kui Chen-Ho, Graham M. Clarke, Kevin W. Gotrik, Michael A. McCoy, Christopher A. Merton, Aaron M. Nash, Shri Niwas, Anthony F. Schultz, Carla S. Thomas, Tien Yi T.H. Whiting, Ying Xia, Scott J. Jones
  • Patent number: 11493674
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a reflective layer that is embedded between the transparent microsphere and the binder layer. At least some of the embedded reflective layers are localized reflective layers.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: November 8, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Kui Chen-Ho, Ann M. Gilman, Kevin W. Gotrik, Scott J. Jones, Daniel M. Lentz, Michael A. McCoy, Shri Niwas, Matthew S. Stay, Ramasubramani Kuduva Raman Thanumoorthy, Ying Xia
  • Publication number: 20220342126
    Abstract: A method of manufacturing an optical film includes providing a base film. The base film includes a substrate defining a first surface and a second surface. The base film also includes a plurality of structures defining an upper surface and at least one side surface extending from the corresponding upper surface to a base portion. The method also includes depositing a catalyst material on each of the plurality of structures and the base portion to form a catalyst layer thereon. The method further includes selectively removing the catalyst layer from the upper surface of each of the plurality of structures and the base portion while retaining an activity of the catalyst layer on the at least one side surface of each of the plurality of structures. The method includes forming a metallic layer on the at least one side surface of each of the plurality of structures.
    Type: Application
    Filed: August 28, 2020
    Publication date: October 27, 2022
    Inventors: Daniel M. Lentz, Kevin W. Gotrik, Jeremy K. Larsen, Caleb T. Nelson, Daniel J. Schmidt, Fei Peng
  • Publication number: 20220308281
    Abstract: An optical system includes an extended illumination source configured to emit light from an extended emission surface thereof and a light redirecting layer disposed on the extended emission surface. The light redirecting layer has a structured major surface that includes a regular array of light redirecting structures, each light redirecting structure including a plurality of facets; and a plurality of discrete spaced apart window segments. The optical system includes a plurality of reflective segments where each reflective segment is disposed on a corresponding window segment. For substantially normally incident light, each reflective segment has a total: average optical reflectance of at least 30% in a visible wavelength range extending from about 420 nm to about 650 nm; and optical transmittance of at least 10% for at least one infrared wavelength in an infrared wavelength range extending from about 800 nm to about 1200 nm.
    Type: Application
    Filed: October 2, 2020
    Publication date: September 29, 2022
    Inventors: Tao Liu, Gary T. Boyd, David A. Rosen, Bharat R. Acharya, Kevin W. Gotrik, David J. Rowe, Caleb T. Nelson
  • Publication number: 20220276417
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a reflective layer that is a locally-laminated reflective layer that is embedded between the transparent microsphere and the binder layer. At least some of the locally-laminated reflective layers may be localized reflective layers.
    Type: Application
    Filed: May 12, 2022
    Publication date: September 1, 2022
    Inventors: Kevin W. Gotrik, Kui Chen-Ho, Scott J. Jones, Michael A. McCoy, Christopher A. Merton, Shri Niwas, Ramasubramani Kuduva Raman Thanumoorthy, Ying Xia
  • Patent number: 11415731
    Abstract: A retroreflective article including a reflective-particle-containing binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements comprise a primary reflective layer that covers a portion of the embedded surface area of the transparent microsphere, and a secondary reflective layer provided by portions of the reflective-particle-containing binder layer that are adjacent to portions of the embedded surface area of the transparent microsphere that are not covered by the primary reflective layer.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: August 16, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. McCoy, Ying Xia, Lok-Man Ng, Shri Niwas, Scott J. Jones, Kevin W. Gotrik, Kui Chen-Ho
  • Publication number: 20220252770
    Abstract: A light control film is described comprising a light input surface and alight output surface opposite the light input surface; alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface, wherein the absorptive regions comprise light-absorbing or light-reflecting particles and a dried aqueous dispersion of an organic polymer. The light control film can have improved on-axis transmission in combination with sufficiently high sheet resistance such that the film does not detract from the responsiveness of a touch screen of an electronic device. Also described is a coated article and method of making.
    Type: Application
    Filed: June 3, 2020
    Publication date: August 11, 2022
    Inventors: Daniel J. Schmidt, Kevin W. Gotrik, James E. Lockridge, Caleb T. Nelson, Bradley L. Givot, Morgan A. Priolo, Luke A. Schroeder
  • Publication number: 20220234382
    Abstract: A transfer article with a thickness of less than 3 micrometers includes a first acrylate layer that is releasable from a metal or doped semiconductor release layer at a release value of from 2 to 50 grams/inch. The article includes a functional layer overlaying the first acrylate layer. The functional layer includes at least one microfractured inorganic layer about 3 nanometers to about 200 nanometers thick, which has a plurality of toolmarks interspersed with cracks.
    Type: Application
    Filed: May 26, 2020
    Publication date: July 28, 2022
    Inventors: Kevin W. Gotrik, Scott J. Jones, Huiwen Tai, Joan M. Frankel, Robert R. Owings, Bhaskar V. Velamakanni, Jeanne M. Bruss, David J. Rowe, Matthew E. Sousa, Bradley L. Givot
  • Publication number: 20220221624
    Abstract: Light control films comprise a light input surface and alight output surface opposite the light input surface and alternating transmissive regions and absorptive regions disposed between the light input surface and the light output surface. The absorptive regions have an aspect ratio of at least 30 and are canted in the same direction. The alternating transmissive regions and absorbing regions have a maximum relative transmission at a viewing angle other than 0 degrees.
    Type: Application
    Filed: June 11, 2020
    Publication date: July 14, 2022
    Inventors: Raymond J. Kenney, Owen M. Anderson, Kevin W. Gotrik, Nicholas A. Johnson, Kenneth A. P. Meyer, Caleb T. Nelson, Daniel J. Schmidt
  • Publication number: 20220214478
    Abstract: A retroreflective article comprises a binder layer and a plurality of retroreflective elements, each retroreflective element comprising a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements comprise a first locally laminated layer and a second locally laminated layer that may be reflective layers. A transfer article comprises a disposable carrier layer in which the retroreflective article is detachably disposed with at least some of the transparent microspheres in contact with the disposable carrier layer.
    Type: Application
    Filed: April 24, 2020
    Publication date: July 7, 2022
    Inventors: Kevin W. Gotrik, Kui Chen-Ho, Graham M. Clarke, Scott J. Jones, Michael A. McCoy, Shri Niwas, David J. Rowe, Tien Yi T.H. Whiting, Ying Xia
  • Publication number: 20220206195
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a first layer that is disposed between the transparent microsphere and the binder layer and a second layer that is disposed between the transparent microsphere and the binder layer. At least one of the first layer and the second layer is a reflective layer; and, the first reflective layer and the second reflective layer differ in reflectivity. For at least some of the retroreflective elements, at least a portion of the second reflective layer is positioned in-parallel to the first reflective layer.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 30, 2022
    Inventors: Kui Chen-Ho, Ying Xia, Tien Yi T.H. Whiting, David J. Rowe, Shri Niwas, Michael A. McCoy, Scott J. Jones, Kevin W. Gotrik, Graham M. Clarke, Lok-Man Ng
  • Patent number: 11366252
    Abstract: A retroreflective article including a binder layer and a plurality of retroreflective elements. Each retroreflective element includes a transparent microsphere partially embedded in the binder layer. At least some of the retroreflective elements include a reflective layer that is a locally-laminated reflective layer that is embedded between the transparent microsphere and the binder layer. At least some of the locally-laminated reflective layers may be localized reflective layers.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: June 21, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin W. Gotrik, Kui Chen-Ho, Scott J. Jones, Michael A. McCoy, Christopher A. Merton, Shri Niwas, Ramasubramani Kuduva Raman Thanumoorthy, Ying Xia
  • Publication number: 20220183153
    Abstract: A patterned article includes a unitary polymeric layer and a plurality of electrically conductive elements embedded at least partially in the unitary polymeric layer. Each electrically conductive element includes a conductive seed layer having a top major surface and an opposite bottom major surface in direct contact with the unitary polymeric layer, and includes a metallic body disposed on the top major surface of the conductive seed layer. The metallic body has a bottom major surface and at least one sidewall. The bottom major surface contacts the conductive seed layer. Each sidewall is in direct contact with the unitary polymeric layer and extends from the bottom major surface of the metallic body toward or to, but not past, a top major surface of the unitary polymeric layer. The conductive elements may be electrically isolated from one another. Processes for making the patterned article are described.
    Type: Application
    Filed: May 5, 2020
    Publication date: June 9, 2022
    Inventors: Raymond P. Johnston, John J. Sullivan, Matthew C. Messina, Charles D. Hoyle, Jaewon Kim, Haiyan Zhang, Matthew S. Stay, Robert A. Sainati, Kevin W. Gotrik, Kenneth A.P. Meyer, Gregory L. Abraham, Joseph C. Carls, Douglas S. Dunn
  • Publication number: 20220163388
    Abstract: An optical system is disclosed and includes an optical sensor, a plurality of photosensitive pixels disposed on the optical sensor, a wavelength-selective optical filter in optical communication with the photosensitive pixels, the wavelength-selective optical filter being disposed remotely from the optical sensor, an area disposed in the wavelength-selective optical filter, the area having a transmission spectrum different from a transmission spectrum of a portion of the wavelength-selective optical filter not in the area and a reflector, the wavelength-selective optical filter and a measurement subject each being disposed between the reflector and the optical sensor along an optical path.
    Type: Application
    Filed: April 1, 2020
    Publication date: May 26, 2022
    Inventors: John A. Wheatley, Mark A. Roehrig, Del R. Lawson, Tony J. Kaufman, James W. Howard, Kevin W. Gotrik, Claire R. Donoghue, Joshua M. Fishman, Jonah Shaver
  • Publication number: 20220167499
    Abstract: A patterned conductive article 200 includes a substrate 210 including a unitary layer 210-1 and includes a micropattern of conductive traces 220 embedded at least partially in the unitary layer. Each conductive trace extends along a longitudinal direction (y-direction) of the conductive trace and includes a conductive seed layer 230 having a top major surface 232 and an opposite bottom major surface 234 in direct contact with the unitary layer; and a unitary conductive body 240 disposed on the top major surface of the conductive seed layer. The unitary conductive body and the conductive seed layer differ in at least one of composition or crystal morphology. The unitary conductive body has lateral sidewalls 242, 244 and at least a majority of a total area of the lateral sidewalls is in direct contact with the unitary layer.
    Type: Application
    Filed: May 5, 2020
    Publication date: May 26, 2022
    Inventors: Raymond P. Johnston, Kevin W. Gotrik, John J. Sullivan, Kenneth A.P. Meyer, Joseph C. Carls, Haiyan Zhang, Gregory L. Abraham, Matthew S. Stay
  • Publication number: 20220113457
    Abstract: The disclosed patterned wavelength-selective material and process for making the patterned wavelength-selective material uses patterned applied adhesive and a structurally weak wavelength-selective material that includes portions that contact the adhesive and break to remain in contact with the adhesive. In one embodiment, the wavelength-selective material comprises an array of sections with cuts at least partially through a wavelength-selective film at each section secured to the adhesive. In another embodiment, the wavelength-selective film comprises a transfer stack of layers.
    Type: Application
    Filed: July 23, 2019
    Publication date: April 14, 2022
    Inventors: Kui CHEN-HO, Douglas S. DUNN, Tien Yi T.H. WHITING, Bryan T. WHITING, Taylor J. KOBE, Anthony F. SCHULTZ, Duane D. FANSLER, Jonah SHAVER, John A. WHEATLEY, Susannah C. CLEAR, Daniel J. THEIS, John T. STRAND, Thomas J. METZLER, Kevin W. GOTRIK, Scott J. JONES
  • Patent number: 11254101
    Abstract: A film including a resin layer comprising a structured major surface opposite a second major surface, the structured major surface including a plurality of features; a barrier layer on the structured major surface; and a first adhesive layer on the barrier layer.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: February 22, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Brett J. Sitter, David J. Rowe, John P. Baetzold, Bill H. Dodge, Evan L. Schwartz, Kevin W. Gotrik, Christopher S. Lyons, Ta-Hua Yu