Patents by Inventor Kevin Wayne Spears

Kevin Wayne Spears has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9965435
    Abstract: Aspects disclosed in the detailed description include communicating low-speed and high-speed parallel bit streams over a high-speed serial bus. In one aspect, a data transmitting circuit converts a low-speed parallel bit stream into a high-speed parallel bit stream and then serializes the converted high-speed parallel bit stream based on a high-speed reference frequency. In another aspect, a data receiving circuit recovers the low-speed parallel bit stream from the high-speed parallel bit stream if the low-speed parallel bit stream is determined to exist in the high-speed parallel bit stream.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: May 8, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: William Knox Ladd, Kevin Wayne Spears, Mark Wesley Vilas, Zhi Zhu
  • Publication number: 20170139872
    Abstract: Aspects disclosed in the detailed description include communicating low-speed and high-speed parallel bit streams over a high-speed serial bus. In one aspect, a data transmitting circuit converts a low-speed parallel bit stream into a high-speed parallel bit stream and then serializes the converted high-speed parallel bit stream based on a high-speed reference frequency. In another aspect, a data receiving circuit recovers the low-speed parallel bit stream from the high-speed parallel bit stream if the low-speed parallel bit stream is determined to exist in the high-speed parallel bit stream.
    Type: Application
    Filed: November 12, 2015
    Publication date: May 18, 2017
    Inventors: William Knox Ladd, Kevin Wayne Spears, Mark Wesley Vilas, Zhi Zhu
  • Patent number: 9509318
    Abstract: Aspects disclosed in the detailed description include apparatuses, methods, and systems for glitch-free clock switching. In this regard, in one aspect, an electronic circuit is switched from a lower-frequency reference clock to a higher-frequency reference clock. An oscillation detection logic is configured to determine the stability of the higher-frequency reference clock prior to switching the electronic circuit to the higher-frequency reference clock. The oscillation detection logic derives a sampled clock signal from the higher-frequency reference clock, wherein the sampled clock signal has a slower frequency than the lower-frequency reference clock. The oscillation detection logic then compares the sampled clock signal against the lower-frequency reference clock to determine the stability of the higher-frequency reference clock.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: November 29, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Chad Everett Winemiller, Behnam Amelifard, Kenneth Luis Arcudia, Jon Raymond Boyette, Chia Heng Chang, Russell Coleman Deans, Kevin Wayne Spears
  • Publication number: 20160269034
    Abstract: Aspects disclosed in the detailed description include apparatuses, methods, and systems for glitch-free clock switching. In this regard, in one aspect, an electronic circuit is switched from a lower-frequency reference clock to a higher-frequency reference clock. An oscillation detection logic is configured to determine the stability of the higher-frequency reference clock prior to switching the electronic circuit to the higher-frequency reference clock. The oscillation detection logic derives a sampled clock signal from the higher-frequency reference clock, wherein the sampled clock signal has a slower frequency than the lower-frequency reference clock. The oscillation detection logic then compares the sampled clock signal against the lower-frequency reference clock to determine the stability of the higher-frequency reference clock.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventors: Chad Everett Winemiller, Behnam Amelifard, Kenneth Luis Arcudia, Jon Raymond Boyette, Chia Heng Chang, Russell Coleman Deans, Kevin Wayne Spears