Patents by Inventor Kewen Kevin Li

Kewen Kevin Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11501905
    Abstract: A monolithic multiferroic heterostructure fabricated using CSD (chemical solution deposition) is disclosed. The monolithic heterostructure includes a substrate, a ferromagnetic layer, a ferroelectric layer, and one or more seed layers that enhance crystallinity and promote high frequency performance.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: November 15, 2022
    Assignee: BOSTON APPLIED TECHNOLOGIES, INC.
    Inventors: Xiaomei Guo, Kewen Kevin Li, Yingyin Kevin Zou, Hua Jiang
  • Publication number: 20220068536
    Abstract: A monolithic multiferroic heterostructure fabricated using CSD (chemical solution deposition) is disclosed. The monolithic heterostructure includes a substrate, a ferromagnetic layer, a ferroelectric layer, and one or more seed layers that enhance crystallinity and promote high frequency performance.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Xiaomei Guo, Kewen Kevin Li, Yingyin Kevin Zou, Hua Jiang
  • Patent number: 10190045
    Abstract: A nano-composite structure comprises of an amorphous matrix with embedded nano-crystallites. The nano-crystallites are precipitated from the amorphous matrix via heat treatment of a solution mixture of metal salts or metalorganic compounds to an appropriate temperature range and with a suitable duration, or heating of a mixture of non-crystalline compounds. The nano-crystallites are self-assembled in the amorphous matrix without forming agglomerates or distinguished grain boundaries. The nano-composite structure can be used for transparent display, transparent optical ceramics, protection armor, nuclear protection, pulsed power, high voltage electronics, high energy storage system and high power microwave systems.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: January 29, 2019
    Inventors: Xiaomei Guo, Kewen Kevin Li, Yingyin Kevin Zou, Hua Jiang
  • Publication number: 20170190970
    Abstract: A nano-composite structure comprises of an amorphous matrix with embedded nano-crystallites. The nano-crystallites are precipitated from the amorphous matrix via heat treatment of a solution mixture of metal salts or metalorganic compounds to an appropriate temperature range and with a suitable duration, or heating of a mixture of non-crystalline compounds. The nano-crystallites are self-assembled in the amorphous matrix without forming agglomerates or distinguished grain boundaries. The nano-composite structure can be used for transparent display, transparent optical ceramics, protection armor, nuclear protection, pulsed power, high voltage electronics, high energy storage system and high power microwave systems.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Xiaomei Guo, Kewen Kevin Li, Yingyin Kevin Zou, Hua Jiang
  • Patent number: 8124254
    Abstract: A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 28, 2012
    Assignee: Boston Applied Technologies, Inc
    Inventors: Yingyin Kevin Zou, Hua Jiang, Kewen Kevin Li, Xiaomei Guo
  • Patent number: 7791791
    Abstract: The present invention provides a rare-earth ions doped, especially erbium and ytterbium doped transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10?16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 1.5 dB/mm at a wavelength of about 1550 nm while optically pumped by a 1.4 watts diode laser at a wavelength of 970 nm at 20° C. The present invention also provides electro-optic devices including a rare-earth ions doped, especially erbium and ytterbium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: September 7, 2010
    Assignee: Boston Applied Technologies, Incorporated
    Inventors: Hua Jiang, Yingyin Kevin Zou, Kewen Kevin Li
  • Publication number: 20090168150
    Abstract: The present invention provides a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10?16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 2 dB/mm at a wavelength of about 1064 nm while optically pumped by a 2 watts diode laser at a wavelength of 802 nm at 20° C. The present invention also provides electro-optic devices including a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The present invention also provides lossless optical devices and amplifiers with an operating wavelength in the range of 1040 nm to 1100 nm while optically pumped at a wavelength in the range of 794 nm to 810 nm.
    Type: Application
    Filed: February 3, 2009
    Publication date: July 2, 2009
    Inventors: Kewen Kevin Li, Hua Jiang, Yingyin Kevin Zou
  • Publication number: 20080151358
    Abstract: The present invention provides a rare-earth ions doped, especially erbium and ytterbium doped transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10?16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 1.5 dB/mm at a wavelength of about 1550 nm while optically pumped by a 1.4 watts diode laser at a wavelength of 970 nm at 20° C. The present invention also provides electro-optic devices including a rare-earth ions doped, especially erbium and ytterbium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum.
    Type: Application
    Filed: July 10, 2007
    Publication date: June 26, 2008
    Inventors: Hua Jiang, Yingyin Kevin Zou, Kewen Kevin Li
  • Publication number: 20080145693
    Abstract: A heterostructure of multiferroics or magnetoelectrics (ME) was disclosed. The film has both ferromagnetic and ferroelectric properties, as well as magneto-optic (MO) and electro-optic (EO) properties. Oxide buffer layers were employed to allow grown a cracking-free heterostructure a solution coating method.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 19, 2008
    Inventors: Yingyin Kevin Zou, Hua Jiang, Kewen Kevin Li, Xiaomei Guo
  • Publication number: 20070285763
    Abstract: The present invention provides a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The electro-optic gain ceramic material either has a linear electro-optic coefficient or a quadratic electro-optic coefficient, which is greater than about 0.3×10?16 m2/V2 for the latter, a propagation loss of less than about 0.3 dB/mm, and an optical gain of great than 2 dB/mm at a wavelength of about 1064 nm while optically pumped by a 2 watts diode laser at a wavelength of 802 nm at 20° C. The present invention also provides electro-optic devices including a neodymium doped, transparent electro-optic gain ceramic material consisting lead, zirconium, titanium and lanthanum. The present invention also provides lossless optical devices and amplifiers with an operating wavelength in the range of 1040 nm to 1100 nm while optically pumped at a wavelength in the range of 794 nm to 810 nm.
    Type: Application
    Filed: September 27, 2006
    Publication date: December 13, 2007
    Inventors: Kewen Kevin Li, Hua Jiang, Yingyin Kevin Zou
  • Patent number: 6798550
    Abstract: A modulator formed with a solid state electro-optic material having a pixellated structure interconnected to a circuit on a semiconductor substrate. Silicon CMOS integrated circuit that can include random access memories (RAMs) are used as a substrate and interfaced to solid state electro-optic materials coated thereon. In particular, the electro-optic modulators are controlled by RAM cells to produce a modulation of reflected light. SRAMs can be used with connection to the SRAM cell flip-flop. DRAMs can be used with the modulator replacing the DRAM storage capacitor. The SLM thus formed can be connected to a digital computer and controlled as if were a being written to as a memory, but other IC structures can also be used. In order to enhance the modulation effects, the electro-optic material is used as the spacer for a Fabry-Perot etalon structure that is also deposited on the semiconductor substrate. PLZT is a suitable electro-optic material.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: September 28, 2004
    Assignee: Corning Applied Technologies Corporation
    Inventors: Feiling Wang, Kewen Kevin Li, Dean Tsang, Hua Jiang