Patents by Inventor Khalid Fatih

Khalid Fatih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8993472
    Abstract: Layered catalyst structures for fuel cells, particularly for a Proton Exchange Membrane Fuel Cell (PEMFC), are produced by a reactive spray deposition technology process. The catalyst layers so produced contain particles sized between 1 and 15 nm and clusters of such particles of a catalyst selected from the group consisting of platinum, platinum alloys with transition metals, mixtures thereof and non-noble metals. The catalyst layers without an electrically conducting supporting medium exhibit dendritic microstructure, providing high electrochemically active surface area and electron conductivity at ultra-low catalyst loading. The catalyst layers deposited on an electrically conducting medium, such as carbon, exhibit three-dimensional functional grading, which provides efficient utilization as a catalyst, high PEMFC performance at the low catalyst loading, and minimized limitations caused by reactant diffusion and activation. The catalytic layers may be produced by a single-run deposition method.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: March 31, 2015
    Assignee: National Research Council of Canada
    Inventors: Justin Roller, Radenka Maric, Khalid Fatih, Roberto Neagu
  • Publication number: 20110212386
    Abstract: Layered catalyst structures for fuel cells, particularly for a Proton Exchange Membrane Fuel Cell (PEMFC), are produced by a reactive spray deposition technology process. The catalyst layers so produced contain particles sized between 1 and 15 nm and clusters of such particles of a catalyst selected from the group consisting of platinum, platinum alloys with transition metals, mixtures thereof and non-noble metals. The catalyst layers without an electrically conducting supporting medium exhibit dendritic microstructure, providing high electrochemically active surface area and electron conductivity at ultra-low catalyst loading. The catalyst layers deposited on an electrically conducting medium, such as carbon, exhibit three-dimensional functional grading, which provides efficient utilization as a catalyst, high PEMFC performance at the low catalyst loading, and minimized limitations caused by reactant diffusion and activation. The catalytic layers may be produced by a single-run deposition method.
    Type: Application
    Filed: November 6, 2009
    Publication date: September 1, 2011
    Inventors: Justin Roller, Radenka Maric, Khalid Fatih, Roberto Neagu