Patents by Inventor Khalid Lief Sorensen

Khalid Lief Sorensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069639
    Abstract: A haptic system can include a user device including one or more haptic actuators and one or more sensors. The haptic system can be configured to perform operations including controlling the haptic actuator(s) to produce a haptic output based on a haptic output profile associated with a desired action of a user of the haptic system; detecting, using the one or more sensors, one or more user response characteristics in response to the haptic output; determining, based at least in part on the one or more user response characteristics, data describing a user action of the user performed after the haptic actuator(s) produces the haptic output; comparing the data describing the user action with data indicative of the desired action to generate an effectiveness metric; and determining a subsequent haptic output profile for a subsequent haptic output based at least in part on the effectiveness metric.
    Type: Application
    Filed: December 30, 2020
    Publication date: February 29, 2024
    Inventors: Kelly Elizabeth Dobson, Franziska Schlagenhauf, William Earl Singhose, Khalid Lief Sorensen, Nina R. Sinatra
  • Publication number: 20180022584
    Abstract: Methods of detection and prevention for snags or off center lifts, and auto-centering a crane over a load. Snag detection includes monitoring angular deflection of the load with respect to an at-rest position, and halting movement of the crane in a direction of increasing angular deflection. Controlling off center lifting includes detecting a side load condition for a load, and preventing a hoist operation when the side load condition is detected. Auto-centering a load includes determining a position of a block coupled to the load with respect to a trolley of the crane, and centering the trolley over the block prior to a moving operation. Centering includes comparing a position of a block marker using a trolley camera to a known centered position of the marker with respect to the camera, and moving the trolley to match the determined position of the marker to its known centered position.
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Inventors: Khalid Lief Sorensen, William Singhose
  • Patent number: 9776838
    Abstract: Methods of detection and prevention for snags or off center lifts, and auto-centering a crane over a load. Snag detection includes monitoring angular deflection of the load with respect to an at-rest position, and halting movement of the crane in a direction of increasing angular deflection. Controlling off center lifting includes detecting a side load condition for a load, and preventing a hoist operation when the side load condition is detected. Auto-centering a load includes determining a position of a block coupled to the load with respect to a trolley of the crane, and centering the trolley over the block prior to a moving operation. Centering includes comparing a position of a block marker using a trolley camera to a known centered position of the marker with respect to the camera, and moving the trolley to match the determined position of the marker to its known centered position.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: October 3, 2017
    Assignee: PAR SYSTEMS, INC.
    Inventors: Khalid Lief Sorensen, William Singhose
  • Publication number: 20160031682
    Abstract: Methods of detection and prevention for snags or off center lifts, and auto-centering a crane over a load. Snag detection includes monitoring angular deflection of the load with respect to an at-rest position, and halting movement of the crane in a direction of increasing angular deflection. Controlling off center lifting includes detecting a side load condition for a load, and preventing a hoist operation when the side load condition is detected. Auto-centering a load includes determining a position of a block coupled to the load with respect to a trolley of the crane, and centering the trolley over the block prior to a moving operation. Centering includes comparing a position of a block marker using a trolley camera to a known centered position of the marker with respect to the camera, and moving the trolley to match the determined position of the marker to its known centered position.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 4, 2016
    Inventors: Khalid Lief Sorensen, William Singhose
  • Patent number: 7970521
    Abstract: Disclosed are algorithms for controlling multiple states of a dynamic system, such as controlling positioning and cable sway in cranes. Exemplary apparatus and methods may be implemented using first and second serially coupled feedback loops coupled to a plant and payload that are to be controlled. The first feedback loop comprises a first control module. It generates a filtered actuator command from an error signal derived from a signal representing a desired system state and a feedback signal indicative of the actual system state. The generated signal is operative to position the payload. The second feedback loop comprises a second control module that generates a second actuator command that is operative to cause the plant to have an output of zero, to eliminate disturbance-induced oscillations. Input shaping may be employed in the first loop for eliminating motion-induced oscillations.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: June 28, 2011
    Assignee: Georgia Tech Research Corporation
    Inventors: Khalid Lief Sorensen, William Singhose, Stephen Dickerson
  • Publication number: 20080281464
    Abstract: Disclosed are algorithms for controlling multiple states of a dynamic system, such as controling positioning and cable sway in cranes. Exemplary apparatus and methods may be implemented using first and second serially coupled feedback loops coupled to a plant and payload that are to be controlled. The first feedback loop comprises a first control module. It generates a filtered actuator command from an error signal derived from a signal representing a desired system state and a feedback signal indicative of the actual system state. The generated signal is operative to position the payload. The second feedback loop comprises a second control module that generates a second actuator command that is operative to cause the plant to have an output of zero, to eliminate disturbance-induced oscillations. Input shaping may be employed in the first loop for eliminating motion-induced oscillations.
    Type: Application
    Filed: April 19, 2006
    Publication date: November 13, 2008
    Inventors: Khalid Lief Sorensen, William Singhose, Stephen Dickerson