Patents by Inventor Ki Cheol Ahn

Ki Cheol Ahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11830824
    Abstract: Exemplary methods of processing a semiconductor substrate may include forming a layer of dielectric material on the semiconductor substrate. The methods may include performing an edge exclusion removal of the layer of dielectric material. The methods may include forming a mask material on the semiconductor substrate. The mask material may contact the dielectric material at an edge region of the semiconductor substrate. The methods may include patterning an opening in the mask material overlying a first surface of the semiconductor substrate. The methods may include etching one or more trenches through the semiconductor substrate.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Amirhasan Nourbakhsh, Lan Yu, Joseph F. Salfelder, Ki Cheol Ahn, Tyler Sherwood, Siddarth Krishnan, Michael Jason Fronckowiak, Xing Chen
  • Patent number: 11799090
    Abstract: Provided a gas diffusion layer for fuel cells, the gas diffusion layer including: a carbon substrate; and a microporous layer formed on the carbon substrate, wherein the microporous layer comprises first carbon particles having a partially graphitized structure and a water-repellent binder resin binding the first carbon particles, and the microporous layer further comprises a cerium compound, a nitrogen-doped cerium compound, nitrogen-doped second carbon particles having a partially graphitized or non-graphitized structure, or a mixture of two or more, as a radical scavenger capable of removing hydrogen peroxide generated at a fuel cell open circuit potential or a higher potential.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: October 24, 2023
    Inventors: Eun Sook Lee, Jy Young Jyoung, Na Hee Kang, Eun Chong Kim, Jong Sik Ryu, Ki Cheol Ahn, Jae Young Choi
  • Publication number: 20230066610
    Abstract: Methods of semiconductor processing may include contacting a substrate with a first slurry and a first platen. The substrate may include silicon oxide defining one or more features, a liner extending across the silicon oxide and within the one or more features, and a copper-containing layer deposited on the liner and extending within the one or more features. The first slurry and the first platen may remove a first portion of the copper-containing layer. The methods may include contacting the substrate with a second slurry and a second platen, which may remove at least a portion of the liner. The methods may include contacting the substrate with a third slurry and a third platen, which may remove a second portion of the copper-containing layer. The methods may include contacting the substrate with a fourth slurry and a fourth platen, which may remove at least a portion of the silicon oxide.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 2, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Tyler Sherwood, Joseph F. Salfelder, Ki Cheol Ahn, Kai Ma, Raghav Sreenivasan, Jason Appell
  • Publication number: 20220310531
    Abstract: Exemplary methods of processing a semiconductor substrate may include forming a layer of dielectric material on the semiconductor substrate. The methods may include performing an edge exclusion removal of the layer of dielectric material. The methods may include forming a mask material on the semiconductor substrate. The mask material may contact the dielectric material at an edge region of the semiconductor substrate. The methods may include patterning an opening in the mask material overlying a first surface of the semiconductor substrate. The methods may include etching one or more trenches through the semiconductor substrate.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Amirhasan Nourbakhsh, Lan Yu, Joseph F. Salfelder, Ki Cheol Ahn, Tyler Sherwood, Siddarth Krishnan, Michael Jason Fronckowiak, Xing Chen
  • Publication number: 20220231304
    Abstract: Provided a gas diffusion layer for fuel cells, the gas diffusion layer including: a carbon substrate; and a microporous layer formed on the carbon substrate, wherein the microporous layer comprises first carbon particles having a partially graphitized structure and a water-repellent binder resin binding the first carbon particles, and the microporous layer further comprises a cerium compound, a nitrogen-doped cerium compound, nitrogen-doped second carbon particles having a partially graphitized or non-graphitized structure, or a mixture of two or more, as a radical scavenger capable of removing hydrogen peroxide generated at a fuel cell open circuit potential or a higher potential.
    Type: Application
    Filed: December 29, 2021
    Publication date: July 21, 2022
    Inventors: Eun Sook Lee, Jy Young Jyoung, Na Hee Kang, Eun Chong Kim, Jong Sik Ryu, Ki Cheol Ahn, Jae Young Choi
  • Patent number: 6864177
    Abstract: A method for manufacturing of a metal line contact plug of a semiconductor device by performing a two step CMP process using (1) a first slurry solution having high etching selectivity of metal/insulating film and (2) a second slurry solution having small etching selectivity of metal/insulating film, thereby minimizing dependency on CMP devices and separating easily a metal line contact plug.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: March 8, 2005
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong Goo Jung, Ki Cheol Ahn, Pan Ki Kwon
  • Publication number: 20030166338
    Abstract: A chemical mechanical polishing (hereinafter, referred to as ‘CMP’) slurry for metal is disclosed, more specifically, method for manufacturing metal line contact plug of semiconductor device using an acidic CMP slurry for oxide film further comprising an oxidizer and a complexing agent, which polishes a metal, an oxide film and a nitride film at a similar speed, thereby easily separates a metal line contact plug.
    Type: Application
    Filed: December 30, 2002
    Publication date: September 4, 2003
    Inventors: Ki Cheol Ahn, Pan Ki Kwon, Jong Goo Jung, Sang Ick Lee
  • Publication number: 20030119324
    Abstract: A method for manufacturing of a metal line contact plug of a semiconductor device by performing a two step CMP process using (1) a first slurry solution having high etching selectivity of metal/insulating film and (2) a second slurry solution having small etching selectivity of metal/insulating film, thereby minimizing dependency on CMP devices and separating easily a metal line contact plug.
    Type: Application
    Filed: December 26, 2002
    Publication date: June 26, 2003
    Inventors: Jong Goo Jung, Ki Cheol Ahn, Pan Ki Kwon