Patents by Inventor Ki-Don Nam

Ki-Don Nam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11369941
    Abstract: A method for preparing a porous carbon material by using coal tar generated in a coke oven gas (COG) process is provided. The method includes: removing quinoline insoluble (QI) by mixing tetrahydrofuran (THF) with coal tar generated in a COG purification process; distilling coal tar by adding a phenolic resin to the QI-removed coal tar, and heating the same at a temperature of 100° C. to 330° C.; carbonizing the distilled coal tar by heating the same at 350° C. to 600° C.; mixing a carbide after the carbonization step and the coal tar, which has been distilled before the carbonization, and grinding/granulating the same; mixing the ground/granulated carbide and the coal tar, which has been distilled before the carbonization, with a pore forming agent, and heat treating the same at 300° C. to 500° C.; and forming pores by making the heat treated carbon material come into contact with water vapor at 700° C. to 1000° C.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: June 28, 2022
    Assignee: POSCO CHEMICAL CO., LTD.
    Inventors: Dong-Min Sung, Ki-Don Nam
  • Publication number: 20200316559
    Abstract: A method for preparing a porous carbon material by using coal tar generated in a coke oven gas (COG) process is provided. The method includes: removing quinoline insoluble (QI) by mixing tetrahydrofuran (THF) with coal tar generated in a COG purification process; distilling coal tar by adding a phenolic resin to the QI-removed coal tar, and heating the same at a temperature of 100° C. to 330° C.; carbonizing the distilled coal tar by heating the same at 350° C. to 600° C.; mixing a carbide after the carbonization step and the coal tar, which has been distilled before the carbonization, and grinding/granulating the same; mixing the ground/granulated carbide and the coal tar, which has been distilled before the carbonization, with a pore forming agent, and heat treating the same at 300° C. to 500° C.; and forming pores by making the heat treated carbon material come into contact with water vapor at 700° C. to 1000° C.
    Type: Application
    Filed: October 2, 2018
    Publication date: October 8, 2020
    Inventors: Dong-Min SUNG, Ki-Don NAM
  • Patent number: 9379389
    Abstract: The present invention relates to a method for producing porous carbon materials comprising the following steps: (S1) forming carbon coatings on surfaces of ceramic nanoparticles; (S2) mixing carbon precursors and ceramic nanoparticles on which carbon coatings are formed in the step (S1); (S3) heat-treating the mixture of the ceramic nanoparticles having carbon coatings thereon and carbon precursors, prepared in the step (S2) to carbonize the mixture; and (S4) removing the ceramic nanoparticles from the material obtained in the step (S3). The method for producing porous carbon materials according to the present invention enables porous carbon materials in which mesopores are uniformly distributed, to be mass produced with low costs. The porous carbon materials having mesopores may be used as catalyst supports for fuel cells, and thus may be used in producing electrodes for fuel cells.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: June 28, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Doo-Hwan Jung, Sang-Kyung Kim, Seong-Yop Lim, Dong-Hyun Peck, Byung-Rok Lee, Ki-Don Nam
  • Publication number: 20130236816
    Abstract: The present invention relates to a method for producing porous carbon materials comprising the following steps: (S1) forming carbon coatings on surfaces of ceramic nanoparticles; (S2) mixing carbon precursors and ceramic nanoparticles on which carbon coatings are formed in the step (S1); (S3) heat-treating the mixture of the ceramic nanoparticles having carbon coatings thereon and carbon precursors, prepared in the step (S2) to carbonize the mixture; and (S4) removing the ceramic nanoparticles from the material obtained in the step (S3). The method for producing porous carbon materials according to the present invention enables porous carbon materials in which mesopores are uniformly distributed, to be mass produced with low costs. The porous carbon materials having mesopores may be used as catalyst supports for fuel cells, and thus may be used in producing electrodes for fuel cells.
    Type: Application
    Filed: November 16, 2011
    Publication date: September 12, 2013
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Doo-Hwan Jung, Sang-Kyung Kim, Seong-Yop Lim, Dong-Hyun Peck, Byung-Rok Lee, Ki-Don Nam