Patents by Inventor Ki Wan Bong

Ki Wan Bong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091991
    Abstract: The present invention relates to a method for fabricating microparticles by using a degassed gas-permeable micro-mold and discontinuous dewetting. The method for fabricating microparticles according to the present invention comprises the steps of: depressurizing and degassing a porous micro-mold including a plurality of micro-wells concavely recessed in a predetermined shape and size from one surface thereof (S100); loading a microparticle precursor solution on which the micro-wells are formed, and covering the microparticle precursor solution with a cover substrate (S200); moving the to cover substrate to the side (S300); and curing the microparticle precursor solution filled in the micro-wells, thereby synthesizing microparticles (S400).
    Type: Application
    Filed: December 28, 2021
    Publication date: March 21, 2024
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Ki Wan BONG, Hyeon Ung KIM
  • Patent number: 11391673
    Abstract: The present invention relates to a method for preparing encoded hydrogel particles for high sensitive detection of a target biomolecule with high accuracy, and encoded hydrogel particles prepared thereby and, specifically, to a method for preparing encoded hydrogel particles, comprising a step of synthesizing hydrogel particles, and then binding a probe thereto, and encoded hydrogel particles prepared thereby. According to the present invention, probes can be loaded with remarkably improved high efficiency, loaded probes can be uniformly distributed, and the potential problem of biomolecule detection inhibition caused by an unreacted end can be resolved. In addition, the present invention can be applied to the diagnosis of diseases or screening of drugs through high sensitive multiplex detection of target biomolecules such as nucleic acids and proteins, and therefore, can be widely used in the field of medical diagnosis including molecular diagnosis.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: July 19, 2022
    Assignee: Korea Univercitv Research and Business Foundation
    Inventors: Ki Wan Bong, Yoon Ho Roh, Hyun June Moon, Hyun Jee Lee, Hyeon Ung Kim, Seok Joon Mun
  • Publication number: 20220195129
    Abstract: The present invention provides a method for producing microparticles in which a porous micromold is degassed such that a precursor solution is quickly loaded into the micromold through the suction force of the micromold regardless of the viscosity and wettability of the precursor solution.
    Type: Application
    Filed: March 5, 2020
    Publication date: June 23, 2022
    Applicant: Korea University Research and Business Foundation
    Inventors: Ki Wan BONG, Hyeon Ung KIM
  • Publication number: 20220011231
    Abstract: The present invention relates to a biomolecule detection apparatus capable of easily and quickly detecting various biomolecules associated with diseases and determining the presence or absence of a specific disease. The biomolecule detection apparatus of the present invention includes a micropore device, a microchip, and sensing electrodes. According to the present invention, a microscale pore is formed inside the micropore device. In addition, the microchip is configured to pass through the microscale pore along the flow of a conductive liquid supplied inside the micropore device, has a surface coated with a sensing molecule complementarily bound to a target biomolecule, and has a unique code for identifying the complementarily bound target biomolecule. The sensing electrodes serve to sense the code by measuring change in current flowing through the pore when the microchip passes through the pore.
    Type: Application
    Filed: November 13, 2019
    Publication date: January 13, 2022
    Inventors: Chang Soo HAN, Ki Wan BONG, Se Hyun SHIN, Ji Hun RYU, Hyeon Ung KIM
  • Publication number: 20200309704
    Abstract: The present invention relates to a method for preparing encoded hydrogel particles for high sensitive detection of a target biomolecule with high accuracy, and encoded hydrogel particles prepared thereby and, specifically, to a method for preparing encoded hydrogel particles, comprising a step of synthesizing hydrogel particles, and then binding a probe thereto, and encoded hydrogel particles prepared thereby. According to the present invention, probes can be loaded with remarkably improved high efficiency, loaded probes can be uniformly distributed, and the potential problem of biomolecule detection inhibition caused by an unreacted end can be resolved. In addition, the present invention can be applied to the diagnosis of diseases or screening of drugs through high sensitive multiplex detection of target biomolecules such as nucleic acids and proteins, and therefore, can be widely used in the field of medical diagnosis including molecular diagnosis.
    Type: Application
    Filed: December 14, 2018
    Publication date: October 1, 2020
    Applicant: Korea University Research and Business Foundation
    Inventors: Ki Wan BONG, Yoon Ho ROH, Hyun June MOON, Hyun Jee LEE, Hyeon Ung KIM, Seok Joon MUN
  • Patent number: 10168271
    Abstract: Methods for sorting cells include: arranging microparticles into an array on a substrate in a microfluidic device, in which the microparticles each include multiple reference markers; introducing multiple cells to the array of microparticles under conditions that enable at least some of the cells to adhere to the microparticles; removing the microparticles, to which the cells are adhered, from the substrate; transferring the microparticles, to which the cells are adhered, to a detection region; and detecting, for each of two or more microparticles that pass through the detection region, a microparticle feature; and sorting the two or more microparticles based on the detected features, in which the detected features are related to a phenotype of the cells.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: January 1, 2019
    Assignee: The General Hospital Corporation
    Inventors: Daniel Irimia, Ki Wan Bong
  • Publication number: 20170306103
    Abstract: Techniques are provided to independently control 3D shape and chemistry of rapidly produced colloids. A pre-polymer mixture including a monomer is made to flow into a channel with insular relief in a wall at a known location of the channel. A stimulus that polymerizes the pre-polymer mixture is directed onto the known location to form a structure locked in place at the known location by the insular relief. A pressure is applied to the channel that is sufficient to deflect the wall having the insular relief sufficiently to release a hydrogel particle comprising the structure.
    Type: Application
    Filed: December 2, 2016
    Publication date: October 26, 2017
    Inventors: Ki Wan Bong, Patrick Seamus Doyle, Daniel Colin Pregibon
  • Patent number: 9512278
    Abstract: Techniques are provided to independently control 3D shape and chemistry of rapidly produced colloids. A pre-polymer mixture including a monomer is made to flow into a channel with insular relief in a wall at a known location of the channel. A stimulus that polymerizes the pre-polymer mixture is directed onto the known location to form a structure locked in place at the known location by the insular relief. A pressure is applied to the channel that is sufficient to deflect the wall having the insular relief sufficiently to release a hydrogel particle comprising the structure.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 6, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Ki Wan Bong, Patrick Seamus Doyle, Daniel Colin Pregibon
  • Publication number: 20160282255
    Abstract: Methods for sorting cells include: arranging microparticles into an array on a substrate in a microfluidic device, in which the microparticles each include multiple reference markers; introducing multiple cells to the array of microparticles under conditions that enable at least some of the cells to adhere to the microparticles; removing the microparticles, to which the cells are adhered, from the substrate; transferring the microparticles, to which the cells are adhered, to a detection region; and detecting, for each of two or more microparticles that pass through the detection region, a microparticle feature; and sorting the two or more microparticles based on the detected features, in which the detected features are related to a phenotype of the cells.
    Type: Application
    Filed: November 3, 2014
    Publication date: September 29, 2016
    Inventors: Daniel IRIMIA, Ki Wan BONG
  • Publication number: 20120135235
    Abstract: Techniques are provided to independently control 3D shape and chemistry of rapidly produced colloids. A pre-polymer mixture including a monomer is made to flow into a channel with insular relief in a wall at a known location of the channel. A stimulus that polymerizes the pre-polymer mixture is directed onto the known location to form a structure locked in place at the known location by the insular relief. A pressure is applied to the channel that is sufficient to deflect the wall having the insular relief sufficiently to release a hydrogel particle comprising the structure.
    Type: Application
    Filed: October 21, 2009
    Publication date: May 31, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Ki Wan Bong, Patrick Seamus Doyle, Daniel Colin Pregibon