Patents by Inventor Ki-Wan Jeon

Ki-Wan Jeon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097218
    Abstract: Methods and systems for executing tracking and monitoring manufacturing data of a battery are disclosed. One method includes: receiving, by a server system, sensing data of the battery from a sensing system; generating, by the server system, mapping data based on the sensing data; generating, by the server system, identification data of the battery based on the sensing data; generating, by the server system, monitoring data of the battery based on the sensing data, the identification data, and the mapping data; and generating, by the server system, display data for displaying a simulated electrode of the battery on a graphical user interface based on the monitoring data of the battery.
    Type: Application
    Filed: August 31, 2023
    Publication date: March 21, 2024
    Inventors: Min Kyu Sim, Jong Seok Park, Min Su Kim, Jae Hwan Lee, Ki Deok Han, Eun Ji Jo, Su Wan Park, Gi Yeong Jeon, June Hee Kim, Wi Dae Park, Dong Min Seo, Seol Hee Kim, Dong Yeop Lee, Jun Hyo Su, Byoung Eun Han, Seung Huh
  • Patent number: 10219779
    Abstract: An apparatus for generating a 3D left ventricle image includes: an ultrasonic sensor transmitting ultrasonic waves to the heart and receiving echoes thereof, an image processor acquiring a plurality of 2D left ventricle images based on the echoes of the ultrasonic waves and extracting sets of left ventricle boundary coordinates from the plurality of 2D images, respectively and a controller calculating a position of the left ventricle in 3D space through transformation of the sets of left ventricle boundary coordinates extracted by the image processor and generating a 3D left ventricle image based on the position of the left ventricle in 3D space.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: March 5, 2019
    Assignee: Institute for Basic Science
    Inventors: Chi Young Ahn, Ki Wan Jeon, Sang Woon Yun
  • Patent number: 9738621
    Abstract: Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 22, 2017
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Dong-Kyun Seo, Ki-Wan Jeon
  • Patent number: 9514549
    Abstract: A method for reducing metal artifacts in computed tomography (CT) is disclosed. The method for reducing metal artifacts in CT includes: obtaining a sinogram reduced in size from an original sinogram; setting up a linear algebraic equation according to remaining data excluding data damaged by a metal based on the obtained sinogram; restoring a low-resolution image based on the set up linear algebraic equation; calculating a sinogram from the restored low-resolution image; restoring a sinogram by disposing the calculated sinogram data in the original sinogram and by utilizing the calculated sinogram data as pre-information; and restoring a final CT image from the restored sinogram. Through introduction of a novel metal artifact reduction (MAR) technique referred to as an algebraic correction technique (ACT) using an intermediate image of an attenuation coefficient of an outside of a metal area, an image closest to an original image can be obtained by minimizing metal artifacts in CT.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 6, 2016
    Assignee: INSTITUTE FOR BASIC SCIENCE
    Inventors: Sung Whan Kim, Ki Wan Jeon, Chi Young Ahn
  • Patent number: 9354187
    Abstract: An apparatus and method for computed tomography image processing is provided. The apparatus includes: an X-ray detection unit that detects an X-ray beam having passed through a subject and outputs an energy value thereof; a line integral calculation unit that calculates line integral values of attenuation coefficients representing attenuation of the energy value of the X-ray beam having passed through the subject and been detected, based on the energy value; an image processing unit that reconstructs a tomogram based on the line integral values; and an image output unit that outputs the tomogram. The apparatus and method for computed tomography image processing can calculate line integral values of attenuation coefficients constituting an integrand of an X-ray projection function using the mean value theorem for integrals in order to restore an image of a subject from an X-ray beam detected in computed tomography image processing.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: May 31, 2016
    Assignee: INSTITUTE FOR BASIC SCIENCE
    Inventors: Ki Wan Jeon, Chi Young Ahn, Sung Whan Kim
  • Publication number: 20160125625
    Abstract: A method for reducing metal artifacts in computed tomography (CT) is disclosed. The method for reducing metal artifacts in CT includes: obtaining a sinogram reduced in size from an original sinogram; setting up a linear algebraic equation according to remaining data excluding data damaged by a metal based on the obtained sinogram; restoring a low-resolution image based on the set up linear algebraic equation; calculating a sinogram from the restored low-resolution image; restoring a sinogram by disposing the calculated sinogram data in the original sinogram and by utilizing the calculated sinogram data as pre-information; and restoring a final CT image from the restored sinogram. Through introduction of a novel metal artifact reduction (MAR) technique referred to as an algebraic correction technique (ACT) using an intermediate image of an attenuation coefficient of an outside of a metal area, an image closest to an original image can be obtained by minimizing metal artifacts in CT.
    Type: Application
    Filed: June 24, 2015
    Publication date: May 5, 2016
    Applicant: INSTITUTE FOR BASIC SCIENCE
    Inventors: Sung Whan KIM, Ki Wan JEON, Chi Young AHN
  • Publication number: 20150366531
    Abstract: Disclosed is an ultrasonic diagnostic apparatus.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 24, 2015
    Applicant: Institute for Basic Science
    Inventors: Chi Young Ahn, Ki Wan Jeon, Jung II Choi
  • Publication number: 20150366533
    Abstract: Disclosed is a method for generating a 3D image of a left ventricle of the heart. The method includes: acquiring, by an image processor, a 2D left ventricle image; extracting, by the image processor, left ventricle boundary coordinates from the 2D image; calculating, by a controller, a position of the left ventricle in 3D space through transformation of the extracted left ventricle boundary coordinates; and generating, by the controller, a 3D left ventricle image based on the calculated position of the left ventricle in 3D space.
    Type: Application
    Filed: June 16, 2015
    Publication date: December 24, 2015
    Applicant: Institute for Basic Science
    Inventors: Chi Young Ahn, Ki Wan Jeon, Sang Woon Yun
  • Publication number: 20150212015
    Abstract: An apparatus and method for computed tomography image processing is provided. The apparatus includes: an X-ray detection unit that detects an X-ray beam having passed through a subject and outputs an energy value thereof; a line integral calculation unit that calculates line integral values of attenuation coefficients representing attenuation of the energy value of the X-ray beam having passed through the subject and been detected, based on the energy value; an image processing unit that reconstructs a tomogram based on the line integral values; and an image output unit that outputs the tomogram. The apparatus and method for computed tomography image processing can calculate line integral values of attenuation coefficients constituting an integrand of an X-ray projection function using the mean value theorem for integrals in order to restore an image of a subject from an X-ray beam detected in computed tomography image processing.
    Type: Application
    Filed: November 11, 2014
    Publication date: July 30, 2015
    Inventors: KI WAN JEON, CHI YOUNG AHN, SUNG WHAN KIM
  • Publication number: 20150164468
    Abstract: An apparatus and method for processing an echocardiogram using the Navier-Stokes equation is provided. The apparatus includes an ultrasonic sensor that transmits ultrasonic waves to the heart in three different directions and receives echoes thereof; an image processor that constructs first to third echocardiograms captured from the three different directions, respectively, based on the received echoes of the ultrasonic waves; a three-dimensional model construction unit that constructs a three-dimensional model of a left ventricle of the heart based on the first to third echocardiograms; and a blood flow vector calculation unit that calculates blood flow vectors within the left ventricle by applying the three-dimensional model of the left ventricle to boundary conditions in the Navier-Stokes equation.
    Type: Application
    Filed: November 11, 2014
    Publication date: June 18, 2015
    Inventors: CHI YOUNG AHN, KI WAN JEON, SUNG HO KANG
  • Publication number: 20140371443
    Abstract: Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.
    Type: Application
    Filed: February 15, 2013
    Publication date: December 18, 2014
    Inventors: Dong-Kyun Seo, Ki-Wan Jeon