Patents by Inventor Kia Yaw Kee

Kia Yaw Kee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9748383
    Abstract: A Metal Oxide Semiconductor (MOS) transistor comprising: a source; a gate; and a drain, the source, gate and drain being located in or on a well structure of a first doping polarity located in or on a substrate; wherein at least one of the source and the drain comprises a first structure comprising: a first region forming a first drift region, the first region being of a second doping polarity opposite the first doping polarity; a second region of the second doping polarity in or on the first region, the second region being a well region and having a doping concentration which is higher than the doping concentration of the first region; and a third region of the second doping polarity in or on the second region. Due to the presence of the second region the transistor may have a lower ON resistance when compared with a similar transistor which does not have the second region. The breakdown voltage may be influenced only to a small extent.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: August 29, 2017
    Assignee: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Elizabeth Ching Tee Kho, Zheng Chao Liu, Deb Kumar Pal, Michael Mee Gouh Tiong, Jian Liu, Kia Yaw Kee
  • Patent number: 9653620
    Abstract: A semiconductor device including a p or p+ doped portion and an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion. The device further includes an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and the at least one doped portion meet. The device further includes at least one additional portion, wherein the at least one additional portion is located such that, when the doped portions and the at least one additional portion are biased, the electrical potential lines leave the semiconductor drift portion homogeneously.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: May 16, 2017
    Assignee: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Alexander Dietrich Hölke, Deb Kumar Pal, Kia Yaw Kee, Yang Hao
  • Publication number: 20160056305
    Abstract: A semiconductor device including a p or p+ doped portion and an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion. The device further includes an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and the at least one doped portion meet. The device further includes at least one additional portion, wherein the at least one additional portion is located such that, when the doped portions and the at least one additional portion are biased, the electrical potential lines leave the semiconductor drift portion homogeneously.
    Type: Application
    Filed: November 4, 2015
    Publication date: February 25, 2016
    Applicant: X-Fab Semiconductor Foundries AG
    Inventors: Alexander Dietrich Holke, Deb Kumar Pal, Kia Yaw Kee, Yang Hao
  • Patent number: 9202937
    Abstract: A semiconductor device comprising: a p or p+ doped portion; an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion; an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and said at least one doped portion meet; and at least one additional portion which is arranged for significantly reducing the variation of the electric field strength in said region when a voltage difference is applied between the doped portions.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: December 1, 2015
    Assignee: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Alexander Dietrich Hölke, Deb Kumar Pal, Kia Yaw Kee, Hao Yang
  • Patent number: 8841186
    Abstract: The disclosed method of manufacturing (110, 120, 130, 140) a semiconductor device (12) has the steps (112, 114, 116) of: forming at least one wall (33) of a body (44) of the semiconductor device (12) by etching at least one trench (22) for a gate (42) of the semiconductor device (12) into the body (44); and performing a slanted implantation doping (126, 128) into the at least one wall (33) of the body (44), after the etching (112) of the at least one trench (22) and prior to coating the at least one trench (22) with an insulating layer (29).
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: September 23, 2014
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Alexander Hoelke, Deb Kumar Pal, Kia Yaw Kee, Yang Hao
  • Patent number: 8759942
    Abstract: The present invention provides semiconductor devices and methods for fabricating the same, in which superior dielectric termination of drift regions is accomplished by a plurality of intersecting trenches with intermediate semiconductor islands. Thus, a deep trench arrangement can be achieved without being restricted by the overall width of the isolation structure.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: June 24, 2014
    Assignee: X-FAB Semiconductor Foundries AG
    Inventors: Alexander Hoelke, Deb Kumar Pal, Pei Shan Chua, Gopalakrishnan Kulathu Sankar, Kia Yaw Kee, Yang Hao, Uta Kuniss
  • Publication number: 20120319193
    Abstract: The disclosed method of manufacturing (110, 120, 130, 140) a semiconductor device (12) has the steps (112, 114, 116) of: forming at least one wall (33) of a body (44) of the semiconductor device (12) by etching at least one trench (22) for a gate (42) of the semiconductor device (12) into the body (44); and performing a slanted implantation doping (126, 128) into the at least one wall (33) of the body (44), after the etching (112) of the at least one trench (22) and prior to coating the at least one trench (22) with an insulating layer (29).
    Type: Application
    Filed: March 4, 2010
    Publication date: December 20, 2012
    Inventors: Alexander Hoelke, Deb Kumar Pal, Kia Yaw Kee, Yang Hao
  • Publication number: 20120161276
    Abstract: The present invention provides semiconductor devices and methods for fabricating the same, in which superior dielectric termination of drift regions is accomplished by a plurality of intersecting trenches with intermediate semiconductor islands. Thus, a deep trench arrangement can be achieved without being restricted by the overall width of the isolation structure.
    Type: Application
    Filed: May 22, 2009
    Publication date: June 28, 2012
    Inventors: Deb Kumar Pal, Alexander Hoelke, Pei Shan Chua, Gopalakrishnan Kulathu Sankar, Kia Yaw Kee, Yang Hao, Uta Kuniss
  • Publication number: 20120126377
    Abstract: A semiconductor device comprising: a p or p+ doped portion; an n or n+ doped portion separated from the p or p+ doped portion by a semiconductor drift portion; an insulating portion provided adjacent the drift portion and at least one of the doped portions in a region where the drift portion and said at least one doped portion meet; and at least one additional portion which is arranged for significantly reducing the variation of the electric field strength in said region when a voltage difference is applied between the doped portions.
    Type: Application
    Filed: May 14, 2010
    Publication date: May 24, 2012
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Alexander Dietrich Holke, Deb Kumar Pal, Kia Yaw Kee, Hao Yang
  • Publication number: 20110198690
    Abstract: A Metal Oxide Semiconductor (MOS) transistor comprising: a source; a gate; and a drain, the source, gate and drain being located in or on a well structure of a first doping polarity located in or on a substrate; wherein at least one of the source and the drain comprises a first structure comprising: a first region forming a first drift region, the first region being of a second doping polarity opposite the first doping polarity; a second region of the second doping polarity in or on the first region, the second region being a well region and having a doping concentration which is higher than the doping concentration of the first region; and a third region of the second doping polarity in or on the second region. Due to the presence of the second region the transistor may have a lower ON resistance when compared with a similar transistor which does not have the second region. The breakdown voltage may be influenced only to a small extent.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 18, 2011
    Inventors: Yong Hai Hu, Elizabeth Ching Tee Kho, Zheng Chao Liu, Deb Kumar Pal, Michael Mee Gouh Tiong, Jian Liu, Kia Yaw Kee, William Siang Lim Lau
  • Publication number: 20100213545
    Abstract: The present invention provides a method for fabricating a MOS transistor (100) with suppression of edge transistor effect. In one embodiment of an NMOS, an elongate implant limb (110, HOa, 114) extends from each of two sidewalls (14a, 14b) of a p-type well (14) to partially wrap around each respective longitudinal end of the gate (20) and to overlay a portion thereof. In another embodiment, the elongate implant limb (110, 110a) extends into the drain/source drift region (32, 42). The NMOS transistor (100) thus fabricated allows the NMOS transistor to operate at relatively high voltages with reduced drain leakage current but with no additional masks or process time in the process integration.
    Type: Application
    Filed: May 15, 2008
    Publication date: August 26, 2010
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Ching Tee Elizabeth Kho, Mee Guoh Michael Tiong, Kia Yaw Kee, Wen Jun Li, Wenyi Li, Michael May, Chean Chian Alain Liew