Patents by Inventor Kieren J. Patel

Kieren J. Patel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10524664
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine a flow rate of fluid in the target; angiography is also performed using one or more fast scanning methods to determine a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: January 7, 2020
    Assignees: NORTHWESTERN UNIVERSITY, OPTICENT, INC.
    Inventors: Wenzhong Liu, Lian Duan, Hao F. Zhang, Kieren J. Patel, Hao Li, Biqin Dong, Amani A. Fawzi
  • Publication number: 20190025476
    Abstract: Systems and methods to generate spatially coherent electromagnetic radiation are disclosed. An example method includes receiving two or more incident wavelengths of electromagnetic radiation; applying the two or more incident wavelengths of electromagnetic radiation to an array of features; generating two or more spatially coherent optical resonating modes through the interaction of the one or more incident wavelengths of electromagnetic radiation and the array of features; and coupling the two or more spatially coherent optical resonating modes to two or more spatially coherent propagating wavelengths of electromagnetic radiation, wherein the spatially coherent propagating wavelengths of electromagnetic radiation are identical to the two or more incident wavelengths of electromagnetic radiation.
    Type: Application
    Filed: January 9, 2017
    Publication date: January 24, 2019
    Applicant: Northwestern University
    Inventors: Cheng Sun, Hao F. Zhang, Biqin Dong, Wenzhong Liu, Kieren J. Patel
  • Publication number: 20180256025
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Application
    Filed: May 7, 2018
    Publication date: September 13, 2018
    Inventors: Ji Yi, Wenzhong Liu, Vadim Backman, Hao F. Zhang, Kieren J. Patel
  • Publication number: 20180242844
    Abstract: The present disclosure provides systems and methods for objective focal length free measurements of fluid flow using OCT. In certain disclosed examples, fOCT data is acquired and optical information is extracted from fOCT scans to quantitatively determine a flow rate of fluid in the target. Determinations of flow rate can enable determination of a change in rate of an analyte over time. The current methods and systems of the disclosure can be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and, more generally, be used for the diagnosis, monitoring and treatment of disease.
    Type: Application
    Filed: August 5, 2016
    Publication date: August 30, 2018
    Inventors: Wenzhong LIU, Hao F. ZHANG, Kieren J. PATEL
  • Patent number: 9962075
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: May 8, 2018
    Assignees: Northwestern University, Opticent INC
    Inventors: Ji Yi, Wenzhong Liu, Vadim Backman, Hao F. Zhang, Kieren J. Patel
  • Publication number: 20180088048
    Abstract: The devices, methods, and systems of the present disclosure provide for spectroscopic super-resolution microscopic imaging. In some examples, spectroscopic super-resolution microscopic imaging may be referred to or comprise spectroscopic photon localization microscopy (SPLM), a method which may employ the use of extrinsic labels or tags in a test sample suitable for imaging. In some examples spectroscopic super-resolution microscopic or spectroscopic photon localization microscopy (SPLM) may not employ extrinsic labels and be performed using the intrinsic contrast of the test sample or test sample material. Generally, spectroscopic super-resolution microscopic imaging may comprise resolving one or more non-diffraction limited images of an area of a test sample by acquiring both localization information of a subset of molecules using microscopic methods known in the art, and simultaneously or substantially simultaneously, acquiring spectral data about the same or corresponding molecules in the subset.
    Type: Application
    Filed: May 1, 2017
    Publication date: March 29, 2018
    Inventors: Biqin Dong, Janel L. Davis, Cheng Sun, Hao F. Zhang, Kieren J. Patel, Ben Urban, Vadim Backman, Luay Almassalha, Yolanda Stypula-Cyrus, The-Quyen Nguyen
  • Publication number: 20180020922
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine a flow rate of fluid in the target; angiography is also performed using one or more fast scanning methods to determine a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Application
    Filed: May 1, 2017
    Publication date: January 25, 2018
    Inventors: Wenzhong Liu, Lian Duan, Hao F. Zhang, Kieren J. Patel, Hao Li, Biqin Dong, Amani A. Fawzi
  • Publication number: 20180001581
    Abstract: Systems, methods, and devices to fabricate one or more device components are disclosed. An example method includes fabricating one or more subject specific device components generated from receiving one or more images of one or more features of the first eye of the subject; designing a three dimensional virtual geometric model of the ophthalmic device using the one or more images; generating a plurality of virtual cross-sections of the three-dimensional virtual geometric model, wherein the cross-sections are defined by a set of physical parameters derived from the three-dimensional model; and fabricating the one or more subject specific features using the plurality of virtual cross-sections of the three dimensional model to direct an additive manufacturing method.
    Type: Application
    Filed: January 14, 2016
    Publication date: January 4, 2018
    Inventors: Jayant K. Patel, Cheng Sun, Hao F. Zhang, Rushi K. Talati, Kieren J. Patel
  • Publication number: 20170188818
    Abstract: The present disclosure provides systems and methods for the determining a rate of change of one or more analyte concentrations in a target using non invasive non contact imaging techniques such as OCT. Generally, OCT data is acquired and optical information is extracted from OCT scans to quantitatively determine both a flow rate of fluid in the target and a concentration of one or more analytes. Both calculations can provide a means to determine a change in rate of an analyte over time. Example methods and systems of the disclosure may be used in assessing metabolism of a tissue, where oxygen is the analyte detected, or other functional states, and be generally used for the diagnosis, monitoring and treatment of disease.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Ji Yi, Wenzhong Liu, Vadim Backman, Hao F. Zhang, Kieren J. Patel