Patents by Inventor Kihyuk Sohn

Kihyuk Sohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11941084
    Abstract: A method for training a machine learning model includes obtaining a set of training samples. For each training sample in the set of training samples, during each of one or more training iterations, the method includes cropping the training sample to generate a first cropped image, cropping the training sample to generate a second cropped image that is different than the first cropped image, and duplicating a first portion of the second cropped image. The method also includes overlaying the duplicated first portion of the second cropped image on a second portion of the second cropped image to form an augmented second cropped image. The first portion is different than the second portion. The method also includes training the machine learning model with the first cropped image and the augmented second cropped image.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 26, 2024
    Assignee: Google LLC
    Inventors: Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Tomas Jon Pfister
  • Publication number: 20230237260
    Abstract: Aspects of the disclosure are directed to a Semi-supervised Pseudo-labeler Anomaly Detection with Ensembling (SPADE) framework that is not limited by the assumption that labeled and unlabeled data come from the same distribution. SPADE utilizes an ensemble of one-class classifiers as the pseudo-labeler to improve the robustness of pseudo-labeling with distribution mismatch. Partial matching automatically selects critical hyper-parameters for pseudo-labeling without validation data, which is crucial with a limited amount of labeled data.
    Type: Application
    Filed: January 5, 2023
    Publication date: July 27, 2023
    Inventors: Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan Omer Arik
  • Publication number: 20230153980
    Abstract: A computer-implemented method includes receiving an anomaly clustering request that requests data processing hardware to assign each image of a plurality of images into one of a plurality of groups. The method also includes obtaining a plurality of images. For each respective image, the method includes extracting a respective set of patch embeddings from the respective image, determining a distance between the respective set of patch embeddings and each other set of patch embeddings, and assigning the respective image into one of the plurality of groups using the distances between the respective set of patch embeddings and each other set of patch embeddings.
    Type: Application
    Filed: November 10, 2022
    Publication date: May 18, 2023
    Applicant: Google LLC
    Inventors: Kihyuk Sohn, Jinsung Yoon, Chun-Liang Li, Tomas Jon Pfister, Chen-Yu Lee
  • Patent number: 11610420
    Abstract: Systems and methods for human detection are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes humans in one or more different scenes. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: March 21, 2023
    Inventors: Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Manmohan Chandraker, Jong-Chyi Su
  • Patent number: 11604943
    Abstract: Systems and methods for domain adaptation for structured output via disentangled representations are provided. The system receives a ground truth of a source domain. The ground truth is used in a task loss function for a first convolutional neural network that predicts at least one output based on inputs from the source domain and a target domain. The system clusters the ground truth of the source domain into a predetermined number of clusters, and predicts, via a second convolutional neural network, a structure of label patches. The structure includes an assignment of each of the at least one output of the first convolutional neural network to the predetermined number of clusters. A cluster loss is computed for the predicted structure of label patches, and an adversarial loss function is applied to the predicted structure of label patches to align the source domain and the target domain on a structural level.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: March 14, 2023
    Inventors: Yi-Hsuan Tsai, Samuel Schulter, Kihyuk Sohn, Manmohan Chandraker
  • Patent number: 11604945
    Abstract: Systems and methods for lane marking and road sign recognition are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes one or more road scenes having lane markings and road signs. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: March 14, 2023
    Inventors: Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Manmohan Chandraker, Jong-Chyi Su
  • Patent number: 11600113
    Abstract: A computer-implemented method for implementing face recognition includes obtaining a face recognition model trained on labeled face data, separating, using a mixture of probability distributions, a plurality of unlabeled faces corresponding to unlabeled face data into a set of one or more overlapping unlabeled faces that include overlapping identities to those in the labeled face data and a set of one or more disjoint unlabeled faces that include disjoint identities to those in the labeled face data, clustering the one or more disjoint unlabeled faces using a graph convolutional network to generate one or more cluster assignments, generating a clustering uncertainty associated with the one or more cluster assignments, and retraining the face recognition model on the labeled face data and the unlabeled face data to improve face recognition performance by incorporating the clustering uncertainty.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: March 7, 2023
    Inventors: Xiang Yu, Manmohan Chandraker, Kihyuk Sohn, Aruni RoyChowdhury
  • Patent number: 11594041
    Abstract: Systems and methods for obstacle detection are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes one or more road scenes having obstacles. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 28, 2023
    Inventors: Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Manmohan Chandraker, Jong-Chyi Su
  • Patent number: 11580780
    Abstract: A computer-implemented method for implementing face recognition includes receiving training data including a plurality of augmented images each corresponding to a respective one of a plurality of input images augmented by one of a plurality of variations, splitting a feature embedding generated from the training data into a plurality of sub-embeddings each associated with one of the plurality of variations, associating each of the plurality of sub-embeddings with respective ones of a plurality of confidence values, and applying a plurality of losses including a confidence-aware identification loss and a variation-decorrelation loss to the plurality of sub-embeddings and the plurality of confidence values to improve face recognition performance by learning the plurality of sub-embeddings.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: February 14, 2023
    Inventors: Xiang Yu, Manmohan Chandraker, Kihyuk Sohn, Yichun Shi
  • Patent number: 11580334
    Abstract: Systems and methods for construction zone segmentation are provided. The system aligns image level features between a source domain and a target domain based on an adversarial learning process while training a domain discriminator. The target domain includes construction zones scenes having various objects. The system selects, using the domain discriminator, unlabeled samples from the target domain that are far away from existing annotated samples from the target domain. The system selects, based on a prediction score of each of the unlabeled samples, samples with lower prediction scores. The system annotates the samples with the lower prediction scores.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 14, 2023
    Inventors: Yi-Hsuan Tsai, Kihyuk Sohn, Buyu Liu, Manmohan Chandraker, Jong-Chyi Su
  • Publication number: 20220391724
    Abstract: Aspects of the disclosure provide for methods, systems, and apparatus, including computer-readable storage media, for anomaly detection using a machine learning framework trained entirely on unlabeled training data including both anomalous and non-anomalous training examples. A self-supervised one-class classifier (STOC) refines the training data to exclude anomalous training examples, using an ensemble of machine learning models. The ensemble of models are retrained on the refined training data. The STOC can also use the refined training data to train a representation learning model to generate one or more feature values for each training example, which can be processed by the trained ensemble of models and eventually used for training an output classifier model to predict whether input data is indicative of anomalous or non-anomalous data.
    Type: Application
    Filed: May 26, 2022
    Publication date: December 8, 2022
    Inventors: Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan Omer Arik
  • Patent number: 11520923
    Abstract: A method for protecting visual private data by preventing data reconstruction from latent representations of deep networks is presented. The method includes obtaining latent features from an input image and learning, via an adversarial reconstruction learning framework, privacy-preserving feature representations to maintain utility performance and prevent the data reconstruction by simulating a black-box model inversion attack by training a decoder to reconstruct the input image from the latent features and training an encoder to maximize a reconstruction error to prevent the decoder from inverting the latent features while minimizing the task loss.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: December 6, 2022
    Inventors: Kihyuk Sohn, Manmohan Chandraker, Yi-Hsuan Tsai
  • Patent number: 11423598
    Abstract: A method for generating a synthetic image with predefined properties. The method includes the steps of providing first values which characterize the predefined properties of the image that is to be generated and attention weights which characterize a weighting of one of the first values and feeding sequentially the first values and assigned attention weights as input value pairs into an generative automated learning system that includes at least a recurrent connection. An image generation system and a computer program that are configured to carry out the method are also described.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: August 23, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Wenling Shang, Kihyuk Sohn
  • Publication number: 20220156521
    Abstract: A method for training a machine learning model includes obtaining a set of training samples. For each training sample in the set of training samples, during each of one or more training iterations, the method includes cropping the training sample to generate a first cropped image, cropping the training sample to generate a second cropped image that is different than the first cropped image, and duplicating a first portion of the second cropped image. The method also includes overlaying the duplicated first portion of the second cropped image on a second portion of the second cropped image to form an augmented second cropped image. The first portion is different than the second portion. The method also includes training the machine learning model with the first cropped image and the augmented second cropped image.
    Type: Application
    Filed: November 11, 2021
    Publication date: May 19, 2022
    Applicant: Google LLC
    Inventors: Kihyuk Sohn, Chun-Liang Li, Jinsung Yoon, Tomas Jon Pfister
  • Patent number: 11314993
    Abstract: An action recognition system is provided that includes a device configured to capture a video sequence formed from a set of unlabeled testing video frames. The system further includes a processor configured to pre-train a recognition engine formed from a reference set of CNNs on a still image domain that includes labeled training still image frames. The processor adapts the recognition engine to a video domain to form an adapted engine, by applying non-reference CNNs to domains that include the still image and video domains and a degraded image domain that includes labeled synthetically degraded versions of the frames in the still image domain. The video domain includes random unlabeled training video frames. The processor recognizes, using the adapted engine, an action performed by at least one object in the sequence, and controls a device to perform a response action in response to an action type of the action.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 26, 2022
    Inventors: Kihyuk Sohn, Xiang Yu, Manmohan Chandraker
  • Patent number: 11087142
    Abstract: Systems and methods for recognizing fine-grained objects are provided. The system divides unlabeled training data from a target domain into two or more target subdomains using an attribute annotation. The system ranks the target subdomains based on a similarity to the source domain. The system applies multiple domain discriminators between each of the target subdomains and a mixture of the source domain and preceding target domains. The system recognizes, using the multiple domain discriminators for the target domain, fine-grained objects.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 10, 2021
    Inventors: Yi-Hsuan Tsai, Manmohan Chandraker, Shuyang Dai, Kihyuk Sohn
  • Patent number: 11055989
    Abstract: Systems and methods for performing domain adaptation include collecting a labeled source image having a view of an object. Viewpoints of the object in the source image are synthesized to generate view augmented source images. Photometrics of each of the viewpoints of the object are adjusted to generate lighting and view augmented source images. Features are extracted from each of the lighting and view augmented source images with a first feature extractor and from captured images captured by an image capture device with a second feature extractor. The extracted features are classified using domain adaptation with domain adversarial learning between extracted features of the captured images and extracted features of the lighting and view augmented source images. Labeled target images are displayed corresponding to each of the captured images including labels corresponding to classifications of the extracted features of the captured images.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: July 6, 2021
    Inventors: Kihyuk Sohn, Luan Tran, Xiang Yu, Manmohan Chandraker
  • Patent number: 11049265
    Abstract: Systems and methods for training and evaluating a deep generative model with an architecture consisting of two complementary density estimators are provided. The method includes receiving a probabilistic model of vehicle motion, and training, by a processing device, a first density estimator and a second density estimator jointly based on the probabilistic model of vehicle motion. The first density estimator determines a distribution of outcomes and the second density estimator estimates sample quality. The method also includes identifying by the second density estimator spurious modes in the probabilistic model of vehicle motion. The probabilistic model of vehicle motion is adjusted to eliminate the spurious modes.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: June 29, 2021
    Inventors: Paul Vernaza, Nicholas Rhinehart, Anqi Liu, Kihyuk Sohn
  • Publication number: 20210142043
    Abstract: A computer-implemented method for implementing face recognition includes receiving training data including a plurality of augmented images each corresponding to a respective one of a plurality of input images augmented by one of a plurality of variations, splitting a feature embedding generated from the training data into a plurality of sub-embeddings each associated with one of the plurality of variations, associating each of the plurality of sub-embeddings with respective ones of a plurality of confidence values, and applying a plurality of losses including a confidence-aware identification loss and a variation-decorrelation loss to the plurality of sub-embeddings and the plurality of confidence values to improve face recognition performance by learning the plurality of sub-embeddings.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 13, 2021
    Inventors: Xiang Yu, Manmohan Chandraker, Kihyuk Sohn, Yichun Shi
  • Publication number: 20210142046
    Abstract: A computer-implemented method for implementing face recognition includes obtaining a face recognition model trained on labeled face data, separating, using a mixture of probability distributions, a plurality of unlabeled faces corresponding to unlabeled face data into a set of one or more overlapping unlabeled faces that include overlapping identities to those in the labeled face data and a set of one or more disjoint unlabeled faces that include disjoint identities to those in the labeled face data, clustering the one or more disjoint unlabeled faces using a graph convolutional network to generate one or more cluster assignments, generating a clustering uncertainty associated with the one or more cluster assignments, and retraining the face recognition model on the labeled face data and the unlabeled face data to improve face recognition performance by incorporating the clustering uncertainty.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 13, 2021
    Inventors: Xiang Yu, Manmohan Chandraker, Kihyuk Sohn, Aruni RoyChowdhury