Patents by Inventor Kim A. Woodrow

Kim A. Woodrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11517729
    Abstract: Systems and methods are provided for fabricating microneedle arrays that includes electrospun fibers preferentially disposed within the microneedles of the array. Providing the electrospun fibers preferentially in the microneedles allows for more of a drug or other substance present in the fibers to be deposited into tissue or to provide other benefits. A mold for forming the microneedle arrays includes an insulating surface layer. The insulating surface layer affects the electric field during electrospinning such that electrospun fibers are deposited preferentially within the microneedle cavities of the mold relative to the surface of the mold. A bulk material can then be applied to the mold to form the bulk of the microneedles with electrospun fibers embedded within and a backing layer to which the microneedles are attached.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: December 6, 2022
    Assignee: University of Washington
    Inventors: Rachel Creighton, Kim Woodrow
  • Publication number: 20200054870
    Abstract: Systems and methods are provided for fabricating microneedle arrays that includes electrospun fibers preferentially disposed within the microneedles of the array. Providing the electrospun fibers preferentially in the microneedles allows for more of a drug or other substance present in the fibers to be deposited into tissue or to provide other benefits. A mold for forming the microneedle arrays includes an insulating surface layer. The insulating surface layer affects the electric field during electrospinning such that electrospun fibers are deposited preferentially within the microneedle cavities of the mold relative to the surface of the mold. A bulk material can then be applied to the mold to form the bulk of the microneedles with electrospun fibers embedded within and a backing layer to which the microneedles are attached.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Inventors: Rachel Creighton, Kim Woodrow
  • Patent number: 9822364
    Abstract: Polymeric nanoparticles encapsulating inhibitory ribonucleic acids (RNAs) and methods of their manufacture and use are provided. Advantageous properties of the nanoparticles include: 1) high encapsulation efficiency of inhibitory RNAs into the nano articles, 2) small size of the nanoparticles that increases cell internalization, and 3) sustained release of encapsulated inhibitory RNAs by the nanoparticles that allows for administration of an effective amount of inhibitory RNAs to cells or tissues over extended periods of time. Encapsulation efficiency of inhibitory RNAs into the nanoparticles is greatly increased by complexing the inhibitory RNAs to polycations prior to encapsulation. Methods of using the polymeric nanoparticles for treating or inhibiting diseases or disorders are provided.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: November 21, 2017
    Assignee: Yale University
    Inventors: W. Mark Saltzman, Kim Woodrow
  • Publication number: 20160361270
    Abstract: Described herein are devices, compositions and methods relating to the production of high basis weight, non-woven nanofiber polymer fabrics. In certain embodiments, described herein are modifications to free-surface, needle-less or nozzle-less electrospinning devices that permit the production of such high basis weight, non-woven nanofiber polymer fabrics. Also described are the fabrics themselves and the fabrics including one or more biologically active agents to be released upon contact with a biological tissue. Such fabrics can incorporate biologically active agents in various combinations that permit, for example, burst and/or sustained release kinetics of one or more, preferably two or more biologically active agents.
    Type: Application
    Filed: June 9, 2016
    Publication date: December 15, 2016
    Applicant: University of Washington
    Inventors: Ryan Stoddard, Richard Alan Edmark, Edward P. Roberts, Joseph-Tin Chan Phan, Kim Woodrow
  • Patent number: 9393216
    Abstract: Described are drug delivery systems incorporating electrospun fibers that comprise and deliver physicochemically diverse drug compounds. Such fibers provide significant advantages in drug agent release, such as adaptability for solid dosage delivery to mucosal tissues. This is in addition to allowing for controlled drug release. Systems and methods for large-scale electrospinning productivity are described, including novel microarchitectures allowing for variable pharmacokinetics in drug release.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: July 19, 2016
    Assignee: UNIVERSITY OF WASHINGTON THROUGH ITS CENTER FOR COMMERCIALIZATION
    Inventors: Kim A. Woodrow, Cameron Ball, Anna Blakney, Emily Krogstad, Huarong Nie
  • Publication number: 20160152987
    Abstract: Polymeric nanoparticles encapsulating inhibitory ribonucleic acids (RNAs) and methods of their manufacture and use are provided. Advantageous properties of the nanoparticles include: 1) high encapsulation efficiency of inhibitory RNAs into the nano articles, 2) small size of the nanoparticles that increases cell internalization, and 3) sustained release of encapsulated inhibitory RNAs by the nanoparticles that allows for administration of an effective amount of inhibitory RNAs to cells or tissues over extended periods of time. Encapsulation efficiency of inhibitory RNAs into the nanoparticles is greatly increased by complexing the inhibitory RNAs to polycations prior to encapsulation. Methods of using the polymeric nanoparticles for treating or inhibiting diseases or disorders are provided.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 2, 2016
    Inventors: W. Mark Saltzman, Kim Woodrow
  • Patent number: 9241898
    Abstract: Polymeric nanoparticles encapsulating inhibitory ribonucleic acids (RNAs) and methods of their manufacture and use are provided. Advantageous properties of the nanoparticles include: 1) high encapsulation efficiency of inhibitory RNAs into the nanoparticles, 2) small size of the nanoparticles that increases cell internalization, and 3) sustained release of encapsulated inhibitory RNAs by the nanoparticles that allows for administration of an effective amount of inhibitory RNAs to cells or tissues over extended periods of time. Encapsulation efficiency of inhibitory RNAs into the nanoparticles is greatly increased by complexing the inhibitory RNAs to polycations prior to encapsulation. Methods of using the polymeric nanoparticles for treating or inhibiting diseases or disorders are provided.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: January 26, 2016
    Assignee: Yale University
    Inventors: W. Mark Saltzman, Kim Woodrow
  • Publication number: 20140128345
    Abstract: Described are drug delivery systems incorporating electrospun fibers that comprise and deliver physicochemically diverse drug compounds. Such fibers provide significant advantages in drug agent release, such as adaptability for solid dosage delivery to mucosal tissues. This is in addition to allowing for controlled drug release. Systems and methods for large-scale electrospinning productivity are described, including novel microarchitectures allowing for variable pharmacokinetics in drug release.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 8, 2014
    Applicant: UNIVERSITY OF WASHINGTON
    Inventors: Kim A. Woodrow, Cameron Ball, Anna Blakney, Emily Krogstad, Huarong Nie
  • Publication number: 20110008451
    Abstract: Polymeric nanoparticles encapsulating inhibitory ribonucleic acids (RNAs) and methods of their manufacture and use are provided. Advantageous properties of the nanoparticles include: 1) high encapsulation efficiency of inhibitory RNAs into the nanoparticles, 2) small size of the nanoparticles that increases cell internalization, and 3) sustained release of encapsulated inhibitory RNAs by the nanoparticles that allows for administration of an effective amount of inhibitory RNAs to cells or tissues over extended periods of time. Encapsulation efficiency of inhibitory RNAs into the nanoparticles is greatly increased by complexing the inhibitory RNAs to polycations prior to encapsulation. Methods of using the polymeric nanoparticles for treating or inhibiting diseases or disorders are provided.
    Type: Application
    Filed: March 11, 2009
    Publication date: January 13, 2011
    Inventors: Mark W. Saltzman, Kim Woodrow
  • Patent number: 7030097
    Abstract: One aspect of the present invention relates to a nucleic acid delivery system including a polymeric structure formed of a biocompatible polymer and a mixture comprising one or more nucleic acid molecules and a first co-dispersant, the mixture being contained within the polymeric structure, wherein the first co-dispersant is present in an amount effective to control diffusion of the one or more nucleic acid from the polymeric structure. Compositions including the nucleic acid delivery system and a pharmaceutically-acceptable carrier are disclosed. Methods of making the nucleic acid delivery system and their use in delivering nucleic acid into a patient and modifying gene expression in a target cell are also disclosed.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: April 18, 2006
    Assignee: Cornell Research Foundation, Inc.
    Inventors: William Mark Saltzman, Dan Luo, Hong Shen, Kim Woodrow-Mumford, Nadya D. Belcheva