Patents by Inventor Kim Albizati

Kim Albizati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230264164
    Abstract: Nucleic acid memory strands encoding digital data using a sequence of a homopolymer tracts of repeated nucleotides provides a cheaper and faster alternative to conventional digital DNA storage techniques. The use of homopolymer tracts allows for lower fidelity, high throughput sequencing techniques such as nanopore sequencing to read data encoded in the memory strands. Specialized synthesis techniques allow for synthesis of long memory strands capable of encoding large volumes of data despite the reduced data density afforded by homopolymer tracts as compared to conventional single nucleotide sequences.
    Type: Application
    Filed: March 27, 2023
    Publication date: August 24, 2023
    Inventors: J. William Efcavitch, Sanjay Agarwalla, Kim Albizati, Alan Grubbs, Matthew Holden, Patrycja Hopkins, Jay Singh
  • Patent number: 11612873
    Abstract: Nucleic acid memory strands encoding digital data using a sequence of homopolymer tracts of repeated nucleotides provides a cheaper and faster alternative to conventional digital DNA storage techniques. The use of homopolymer tracts allows for lower fidelity, high throughput sequencing techniques such as nanopore sequencing to read data encoded in the memory strands. Specialized synthesis techniques allow for synthesis of long memory strands capable of encoding large volumes of data despite the reduced data density afforded by homopolymer tracts as compared to conventional single nucleotide sequences.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: March 28, 2023
    Assignee: Molecular Assemblies, Inc.
    Inventors: J. William Efcavitch, Sanjay Agarwalla, Kim Albizati, Alan W. Grubbs, Matthew T. Holden, Patrycja A. Hopkins, Jay K. Singh
  • Patent number: 11384377
    Abstract: The invention provides improved methods for synthesizing polynucleotides, such as DNA and RNA, using renewable initiators coupled to a solid support. Using the methods of the invention, specific sequences of polynucleotides can be synthesized de novo, base by base, in an aqueous environment, without the use of a nucleic acid template.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: July 12, 2022
    Assignee: Molecular Assemblies, Inc.
    Inventors: J. William Efcavitch, Kim Albizati, Natasha Paul, Sanjay Agarwalla
  • Publication number: 20190344239
    Abstract: Nucleic acid memory strands encoding digital data using a sequence of homopolymer tracts of repeated nucleotides provides a cheaper and faster alternative to conventional digital DNA storage techniques. The use of homopolymer tracts allows for lower fidelity, high throughput sequencing techniques such as nanopore sequencing to read data encoded in the memory strands. Specialized synthesis techniques allow for synthesis of long memory strands capable of encoding large volumes of data despite the reduced data density afforded by homopolymer tracts as compared to conventional single nucleotide sequences.
    Type: Application
    Filed: April 24, 2019
    Publication date: November 14, 2019
    Inventors: J. William Efcavitch, Sanjay Agarwalla, Kim Albizati, Alan W. Grubbs, Matthew T. Holden, Patrycja A. Hopkins, Jay K. Singh
  • Publication number: 20120107886
    Abstract: Provided herein is a method of oxidizing lignin. Further disclosed herein are aromatic and non-aromatic compounds obtained from oxidized lignin.
    Type: Application
    Filed: June 1, 2010
    Publication date: May 3, 2012
    Applicant: Strategic Enzyme Applications, Inc.
    Inventors: Kim Albizati, Cara Tracewell
  • Publication number: 20050250949
    Abstract: Optically active 3-amino-butene and 1,2-dihydroxy-3-amino-butane intermediate compounds, useful in the synthesis of HIV-protease inhibitors and methods of preparing these intermediate compounds are disclosed.
    Type: Application
    Filed: May 4, 2004
    Publication date: November 10, 2005
    Inventors: Kim Albizati, Srinivasan Babu