Patents by Inventor Kim Ramkumar VELLORE

Kim Ramkumar VELLORE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11756816
    Abstract: A carrier FOUP and a method of placing a carrier are provided. The carrier FOUP includes a body and a door. The body includes a plurality of chamfers, and one or more carriers are placed on, and supported by, the plurality of chamfers. The method of placing a carrier includes placing the carrier in the carrier FOUP and closing the door of the carrier FOUP. When the door is closed, the door pushes against the carrier and aligns the carrier with the alignment feature. The alignment features align the carrier, removing the need to be aligned by the factory interface robot when placing or removing the carrier from the carrier FOUP.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Steven Trey Tindel, Alexander N. Lerner, Kim Ramkumar Vellore
  • Patent number: 11637004
    Abstract: An alignment module for housing and cleaning masks. The alignment module comprises a mask stocker, a cleaning chamber, an alignment chamber, an alignment stage a transfer robot. The mask stocker is configured to house a mask cassette configured to store a plurality of masks. The cleaning chamber is configured to clean the plurality of masks by providing one or more cleaning gases into a chamber after a mask is inserted into the cleaning chamber. The alignment stage is configured to support a carrier and a substrate. The transfer robot is configured to transfer a mask from one or more of the alignment stage and the mask stocker to the cleaning chamber.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: April 25, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Michael P. Karazim, Andrew J. Constant, Jeffrey A. Brodine, Kim Ramkumar Vellore, Kevin Moraes, Roey Shaviv
  • Publication number: 20230066087
    Abstract: The present disclosure generally relates to a substrate support for processing of semiconductor substrates. In one example, the substrate support has a body. The body has a top surface configured to support a substrate thereon. The body has a bottom surface opposite the top surface. The body has an upper portion disposed at the top surface and a lower portion disposed at the bottom surface. An IR blocking material is encased by the upper portion and the lower portion, wherein the IR blocking material is an optically opaque at IR wavelengths and the lower portion is optically transparent at IR wavelengths.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Inventor: Kim Ramkumar Vellore
  • Patent number: 11538706
    Abstract: An alignment module for positioning a mask on a substrate comprises a mask stocker, an alignment stage, and a transfer robot. The mask stocker houses a mask cassette that stores a plurality of masks. The alignment stage is configured to support a carrier and a substrate. The transfer robot is configured to transfer one of the one or more masks from the mask stocker to the alignment stage and position the mask over the substrate. The alignment module may be part of an integrated platform having one or more transfer chambers, a factory interface having a substrate carrier chamber and one or more processing chambers. A carrier may be coupled to a substrate within the substrate carrier chamber and moved between the processing chambers to generate a semiconductor device.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: December 27, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Michael P. Karazim, Andrew J. Constant, Jeffrey A. Brodine, Kim Ramkumar Vellore, Kevin Moraes, Roey Shaviv
  • Patent number: 11469124
    Abstract: Embodiments of the present disclosure relate to a substrate transfer device having a contactless latch and contactless coupling providing the ability to lock and unlock the substrate transfer device at atmospheric and vacuum pressure with without particle generation at a base of the substrate transfer device, the contactless latch, and the contactless coupling. The substrate transfer device includes a lid having one or more lid grooves, a base having one or more base grooves, and a rotation member rotatably coupled to the lid. Each flange of one or more flanges of the substrate transfer device is rotatable in aligned lid grooves and base grooves, and each flange of the one or more flanges has an arm with a ferromagnetic material coupled thereto. The base is coupled to the lid when the ferromagnetic material of the arm is aligned and spaced from a magnetic material of a slot of the one or more base grooves.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shreyas Patil Shanthaveeraswamy, Ribhu Gautam, Kumaresan Nagarajan, Vijay Singh, Andrew J. Constant, Michael P. Karazim, Kim Ramkumar Vellore
  • Patent number: 11414740
    Abstract: Embodiments of the present disclosure generally relate to a processing system for forming one or more layers of a photodiode. In one embodiment, the processing system includes a transfer chamber, a plurality of processing chambers, and a controller configured to cause a process to be performed in the processing system. The process includes performing a pre-clean process on a substrate, aligning and placing a first mask on the substrate, depositing a first layer on the substrate, and depositing a second layer on the substrate. The processing system can form layers of a photodiode in a low defect, cost effective, and high utilization manner.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: August 16, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Roey Shaviv, Michael P. Karazim, Kevin Vincent Moraes, Steven V. Sansoni, Andrew J. Constant, Jeffrey Allen Brodine, Kim Ramkumar Vellore, Amikam Sade, Niranjan Kumar
  • Patent number: 11196360
    Abstract: A chucking station comprises a chuck, a power supply, and one or more pumping elements. The chuck comprises a plurality of first vacuum ports configured to interface with a surface of a substrate and a plurality of second vacuum ports configured to interface with a surface of a carrier. The chuck further comprises a first electrical pin configured to be in electrical communication with a first electrode of the carrier, and a second electrical pin configured to be in electrical communication with a second electrode of the carrier. The power supply is configured to apply a chucking voltage and a de-chucking voltage to the first and second electrical pins. The one or more pumping elements is coupled to the first and second vacuum ports and configured to generate a vacuum between the substrate and the chuck and a vacuum between the carrier and the chuck.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: December 7, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Kim Ramkumar Vellore, Steven Trey Tindel
  • Patent number: 11183411
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kim Ramkumar Vellore, Alexander N. Lerner, Steven Trey Tindel
  • Publication number: 20210159106
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Application
    Filed: January 25, 2021
    Publication date: May 27, 2021
    Inventors: Kim Ramkumar VELLORE, Alexander N. LERNER, Steven Trey TINDEL
  • Patent number: 10916464
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: February 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kim Ramkumar Vellore, Alexander N. Lerner, Steven Trey Tindel
  • Publication number: 20210028039
    Abstract: A carrier FOUP and a method of placing a carrier are provided. The carrier FOUP includes a body and a door. The body includes a plurality of chamfers, and one or more carriers are placed on, and supported by, the plurality of chamfers. The method of placing a carrier includes placing the carrier in the carrier FOUP and closing the door of the carrier FOUP. When the door is closed, the door pushes against the carrier and aligns the carrier with the alignment feature. The alignment features align the carrier, removing the need to be aligned by the factory interface robot when placing or removing the carrier from the carrier FOUP.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 28, 2021
    Inventors: Steven Trey TINDEL, Alexander N. LERNER, Kim Ramkumar VELLORE
  • Publication number: 20210028044
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Application
    Filed: August 27, 2019
    Publication date: January 28, 2021
    Inventors: Kim Ramkumar VELLORE, Alexander N. LERNER, Steven Trey TINDEL
  • Publication number: 20210028726
    Abstract: A chucking station comprises a chuck, a power supply, and one or more pumping elements. The chuck comprises a plurality of first vacuum ports configured to interface with a surface of a substrate and a plurality of second vacuum ports configured to interface with a surface of a carrier. The chuck further comprises a first electrical pin configured to be in electrical communication with a first electrode of the carrier, and a second electrical pin configured to be in electrical communication with a second electrode of the carrier. The power supply is configured to apply a chucking voltage and a de-chucking voltage to the first and second electrical pins. The one or more pumping elements is coupled to the first and second vacuum ports and configured to generate a vacuum between the substrate and the chuck and a vacuum between the carrier and the chuck.
    Type: Application
    Filed: October 16, 2019
    Publication date: January 28, 2021
    Inventors: Alexander N. LERNER, Kim Ramkumar VELLORE, Steven Trey TINDEL
  • Publication number: 20200385851
    Abstract: Embodiments of the present disclosure generally relate to a processing system for forming one or more layers of a photodiode. In one embodiment, the processing system includes a transfer chamber, a plurality of processing chambers, and a controller configured to cause a process to be performed in the processing system. The process includes performing a pre-clean process on a substrate, aligning and placing a first mask on the substrate, depositing a first layer on the substrate, and depositing a second layer on the substrate. The processing system can form layers of a photodiode in a low defect, cost effective, and high utilization manner.
    Type: Application
    Filed: May 1, 2020
    Publication date: December 10, 2020
    Inventors: Alexander N. LERNER, Roey SHAVIV, Michael P. KARAZIM, Kevin Vincent MORAES, Steven V. SANSONI, Andrew J. CONSTANT, Jeffrey Allen BRODINE, Kim Ramkumar VELLORE, Amikam SADE, Niranjan KUMAR
  • Publication number: 20200381278
    Abstract: A method and apparatus for measuring a temperature of a substrate located in a semiconductor processing environment is disclosed. The substrate has a top surface and an edge surface, and is positioned in a prescribed location within the semiconductor processing environment. An infrared camera oriented to view one side of the edge surface of the substrate is triggered to obtain an infrared image of the one side of the edge surface of the substrate. The infrared image is processed to obtain a temperature profile of the substrate.
    Type: Application
    Filed: May 28, 2020
    Publication date: December 3, 2020
    Inventors: Kim Ramkumar VELLORE, Leonid M. TERTITSKI, Matthew D. SCOTNEY-CASTLE
  • Publication number: 20200373134
    Abstract: An alignment module for housing and cleaning masks. The alignment module comprises a mask stocker, a cleaning chamber, an alignment chamber, an alignment stage a transfer robot. The mask stocker is configured to house a mask cassette configured to store a plurality of masks. The cleaning chamber is configured to clean the plurality of masks by providing one or more cleaning gases into a chamber after a mask is inserted into the cleaning chamber. The alignment stage is configured to support a carrier and a substrate. The transfer robot is configured to transfer a mask from one or more of the alignment stage and the mask stocker to the cleaning chamber.
    Type: Application
    Filed: April 14, 2020
    Publication date: November 26, 2020
    Inventors: Alexander N. LERNER, Michael P. KARAZIM, Andrew J. CONSTANT, Jeffrey A. BRODINE, Kim Ramkumar VELLORE, Kevin MORAES, Roey SHAVIV
  • Publication number: 20200373183
    Abstract: An alignment module for positioning a mask on a substrate comprises a mask stocker, an alignment stage, and a transfer robot. The mask stocker houses a mask cassette that stores a plurality of masks. The alignment stage is configured to support a carrier and a substrate. The transfer robot is configured to transfer one of the one or more masks from the mask stocker to the alignment stage and position the mask over the substrate. The alignment module may be part of an integrated platform having one or more transfer chambers, a factory interface having a substrate carrier chamber and one or more processing chambers. A carrier may be coupled to a substrate within the substrate carrier chamber and moved between the processing chambers to generate a semiconductor device.
    Type: Application
    Filed: April 14, 2020
    Publication date: November 26, 2020
    Inventors: Alexander N. LERNER, Michael P. KARAZIM, Andrew J. CONSTANT, Jeffrey A. BRODINE, Kim Ramkumar VELLORE, Kevin MORAES, Roey SHAVIV
  • Publication number: 20200286760
    Abstract: Embodiments of the present disclosure relate to a substrate transfer device having a contactless latch and contactless coupling providing the ability to lock and unlock the substrate transfer device at atmospheric and vacuum pressure with without particle generation at a base of the substrate transfer device, the contactless latch, and the contactless coupling. The substrate transfer device includes a lid having one or more lid grooves, a base having one or more base grooves, and a rotation member rotatably coupled to the lid. Each flange of one or more flanges of the substrate transfer device is rotatable in aligned lid grooves and base grooves, and each flange of the one or more flanges has an arm with a ferromagnetic material coupled thereto. The base is coupled to the lid when the ferromagnetic material of the arm is aligned and spaced from a magnetic material of a slot of the one or more base grooves.
    Type: Application
    Filed: January 24, 2020
    Publication date: September 10, 2020
    Inventors: Shreyas PATIL SHANTHAVEERASWAMY, Ribhu GAUTAM, Kumaresan NAGARAJAN, Vijay SINGH, Andrew J. CONSTANT, Michael P. KARAZIM, Kim Ramkumar VELLORE
  • Publication number: 20180374736
    Abstract: Embodiments of the disclosure relate to the use of an electrostatic carrier for securing, transporting and assembling dies on a substrate. In one embodiment, an electrostatic carrier includes a body having a top surface and a bottom surface, at least a first bipolar chucking electrode disposed within the body, at least two contact pads disposed on the bottom surface of the body and connected to the first bipolar chucking electrode, and a floating electrode disposed between the first bipolar chucking electrode and the bottom surface. In another embodiment, a die-assembling system includes the electrostatic carrier configured to electrostatically secure a plurality of dies, a carrier-holding platform configured to hold the electrostatic carrier, a die input platform and a loading robot having a range of motion configured to pick the plurality of dies from the die input platform and place them on the electrostatic carrier.
    Type: Application
    Filed: June 14, 2018
    Publication date: December 27, 2018
    Inventors: Niranjan KUMAR, Kim Ramkumar VELLORE, Douglas H. BURNS, Gautam PISHARODY, Seshadri RAMASWAMI, Douglas A. BUCHBERGER, JR.