Patents by Inventor Kim S. Doan

Kim S. Doan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12183892
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: December 31, 2024
    Assignee: Enovix Corporation
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Harrold J. Rust, III, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Jeremie J. Dalton, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin J. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Patent number: 12087947
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: September 10, 2024
    Assignee: Enovix Corporation
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Patent number: 5069771
    Abstract: A method of electrowinning a metal by electrolysis of a melt containing a dissolved species of the metal to be won using a non-consumable anode having a metal, alloy or cermet substrate and an operative anode surface which is a protective surface coating of cerium oxyfluoride preserved by maintaining in the melt a suitable concentration of cerium, is characterized by using an anode provided with an electronically conductive oxygen barrier on the surface of the metal, alloy or cermet substrate. The barrier layer may be a chromium oxide film on a chromium-containing alloy substrate. Preferably the barrier layer carries a ceramic oxide layer, e.g. of stabilized copper oxide which acts as anchorage for the cerium oxyfluoride.
    Type: Grant
    Filed: April 28, 1989
    Date of Patent: December 3, 1991
    Assignee: Moltech Invent S.A.
    Inventors: Thinh Nguyen, Adbelkrim Lazouni, Kim S. Doan
  • Patent number: 4960494
    Abstract: A ceramic/metal composite material comprises a surface ceramic coating comprising an oxidized alloy of copper stabilized by being in solid solution with nickel oxide or manganese oxide on a substrate which is an oxidation resistant alloy essentially devoid of copper or any metal which oxidizes more readily than copper. The composite is made by oxidizing a copper-based alloy on a substrate and simultaneously oxidizing the substrate surface to form an oxygen-barrier interface, for example a chromium oxide layer formed on an alloy of chrominum with nickel, iron and/or cobalt. The composite may be used as anode substrate for a cerium oxyfluoride coating used in aluminum electrowinning.
    Type: Grant
    Filed: April 28, 1989
    Date of Patent: October 2, 1990
    Assignee: MOLTECH Invent S.A.
    Inventors: Thinn Nguyen, Abdelkrim Lazouni, Kim S. Doan
  • Patent number: 4956068
    Abstract: A non-consumable anode of the type comprising an oxide ceramic coating on a metal substrate, for molten salt electrolysis, namely the electrowinning of metals such as aluminum, has an electronically-conductive oxygen barrier layer between the oxide ceramic coating and the substrate, the oxygen barrier layer containing chromium oxide. Usually, the oxygen barrier layer is a surface film integral with a chromium-containing alloy substrate, comprising 10 to 30% by weight of chromium, 55 to 90% of nickel, cobalt and/or iron and up to 15% of aluminum, titanium, zirconium, yttrium, hafnium or niobium. The ceramic oxide coating may comprise copper oxide in solid solution with at least one further oxide; nickel ferrite; copper oxide and nickel ferrite; doped, non-stoichiometric or partially substituted spinels; or rare earth metal oxides or oxyfluorides.
    Type: Grant
    Filed: September 2, 1987
    Date of Patent: September 11, 1990
    Assignee: Moltech Invent S.A.
    Inventors: Thinh Nguyen, Abdelkrim Lazouni, Kim S. Doan