Patents by Inventor Kimberly K. Anderson

Kimberly K. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6899827
    Abstract: Sintered, translucent ceramic microbeads, preferably alumina, titania, zirconia, yttria, zirconium phosphate, or yttrium aluminum garnet (YAG) are doped with one or more optically active species. The beads may be added to substances such as explosives in order to create a distinctive optical signature that identifies a manufacturer, lot number, etc. in the event of the need for forensic analysis. Because the beads have a generally spherical surface, the radius of curvature provides an additional distinguishing characteristic by which a particular sample may be identified. The beads could also be formulated into paints if needed to create distinctive optical signatures for camouflage, decoys, or other countermeasures and could also be applied as a dust to track the movement of personnel, vehicles, etc.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 31, 2005
    Assignee: UT-Battelle, LLC
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery
  • Patent number: 6821474
    Abstract: The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO3, PbTiO3, SrZrO3) structure. The sintered beads are incorporated into a selected polymer matrix.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: November 23, 2004
    Assignee: UT-Battelle, LLC
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins, John J. Felten
  • Publication number: 20040060730
    Abstract: The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO3, PbTiO3, SrZrO3) structure. The sintered beads are incorporated into a selected polymer matrix.
    Type: Application
    Filed: March 18, 2003
    Publication date: April 1, 2004
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins, John J. Felten
  • Patent number: 6600645
    Abstract: The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO3, PbTiO3, SrZrO3) structure. The sintered beads are incorporated into a selected polymer matrix.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: July 29, 2003
    Assignees: UT-Battelle, LLC, E. I. Dupont de Nemours and Company
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins, John J. Felten
  • Patent number: 6599493
    Abstract: The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or s
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 29, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Jack L. Collins, Robert J. Lauf, Kimberly K. Anderson
  • Publication number: 20030129387
    Abstract: The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe12O19 or SrFe12O19) crystal structure.
    Type: Application
    Filed: September 25, 2002
    Publication date: July 10, 2003
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins
  • Publication number: 20030021747
    Abstract: The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or s
    Type: Application
    Filed: July 27, 2001
    Publication date: January 30, 2003
    Inventors: Jack L. Collins, Robert J. Lauf, Kimberly K. Anderson
  • Publication number: 20030021985
    Abstract: The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe12O19 or SrFe12O19) crystal structure.
    Type: Application
    Filed: September 25, 2002
    Publication date: January 30, 2003
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins
  • Patent number: 6492016
    Abstract: The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe12O19 or SrFe12O19) crystal structure.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: December 10, 2002
    Assignee: UT-Battelle, LLC
    Inventors: Robert J. Lauf, Kimberly K. Anderson, Frederick C. Montgomery, Jack L. Collins