Patents by Inventor Kimberly Merritt Shultz

Kimberly Merritt Shultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065636
    Abstract: An oximeter probe that takes into account tissue color (e.g., skin color or melanin content) to improve accuracy when determining oxygen saturation of tissue. Light is transmitted from a light source into tissue having melanin (e.g., eumelanin or pheomelanin). Light reflected from the tissue is received by a detector. A compensation factor is determined to account for absorption due to the melanin. The oximeter uses this compensation factor and determines a melanin-corrected oxygen saturation value.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Kate LeeAnn Bechtel, Kimberly Merritt Shultz, Alex Michael Margiott, George Edward Kechter
  • Patent number: 11806170
    Abstract: An oximeter probe that takes into account tissue color (e.g., skin color or melanin content) to improve accuracy when determining oxygen saturation of tissue. Light is transmitted from a light source into tissue having melanin (e.g., eumelanin or pheomelanin). Light reflected from the tissue is received by a detector. A compensation factor is determined to account for absorption due to the melanin. The oximeter uses this compensation factor and determines a melanin-corrected oxygen saturation value.
    Type: Grant
    Filed: November 3, 2020
    Date of Patent: November 7, 2023
    Assignee: ViOptix, Inc.
    Inventors: Kate Leeann Bechtel, Kimberly Merritt Shultz, Alex Michael Margiott, George Edward Kechter
  • Publication number: 20230329598
    Abstract: A probe tip of an oximeter device includes first and second printed circuit boards (PCBs) that are coupled to the ends of optical fibers that transmit light between the PCBs and into patient tissue that is to be measured by the oximeter device. The PCBs are oriented at an angle between zero and ninety degrees so that the fibers have a curved shape between the locations at which the fibers are coupled to the first and second PCBs. The angular orientation of the PCBs and curved shape of the fibers allows the fibers to have a longer length than if the fibers were straight and allows for light transmitted through the fibers to have a uniform distribution across a cross-section of the fibers as the light is emitted from the fibers into patient tissue. The uniform distribution of light transmitted into patient tissue allows for reliable oximetry measurements.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 19, 2023
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz
  • Publication number: 20230240568
    Abstract: An oximeter probe determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter probe. The oximeter probe then displays a value for the oxygen saturation with the error value to indicate a quality level for the oxygen saturation and associated values used to calculate oxygen saturation.
    Type: Application
    Filed: February 24, 2023
    Publication date: August 3, 2023
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz, Scott E. Coleridge, Joseph Heanue
  • Patent number: 11672448
    Abstract: A probe tip of an oximeter device includes first and second printed circuit boards (PCBs) that are coupled to the ends of optical fibers that transmit light between the PCBs and into patient tissue that is to be measured by the oximeter device. The PCBs are oriented at an angle between zero and ninety degrees so that the fibers have a curved shape between the locations at which the fibers are coupled to the first and second PCBs. The angular orientation of the PCBs and curved shape of the fibers allows the fibers to have a longer length than if the fibers were straight and allows for light transmitted through the fibers to have a uniform distribution across a cross-section of the fibers as the light is emitted from the fibers into patient tissue. The uniform distribution of light transmitted into patient tissue allows for reliable oximetry measurements.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 13, 2023
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz
  • Patent number: 11589784
    Abstract: An oximeter probe determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter probe. The oximeter probe then displays a value for the oxygen saturation with the error value to indicate a quality level for the oxygen saturation and associated values used to calculate oxygen saturation.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: February 28, 2023
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz, Scott Coleridge, Joseph Heanue
  • Publication number: 20210212615
    Abstract: A probe tip of an oximeter device includes first and second printed circuit boards (PCBs) that are coupled to the ends of optical fibers that transmit light between the PCBs and into patient tissue that is to be measured by the oximeter device. The PCBs are oriented at an angle between zero and ninety degrees so that the fibers have a curved shape between the locations at which the fibers are coupled to the first and second PCBs. The angular orientation of the PCBs and curved shape of the fibers allows the fibers to have a longer length than if the fibers were straight and allows for light transmitted through the fibers to have a uniform distribution across a cross-section of the fibers as the light is emitted from the fibers into patient tissue. The uniform distribution of light transmitted into patient tissue allows for reliable oximetry measurements.
    Type: Application
    Filed: January 11, 2021
    Publication date: July 15, 2021
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz
  • Publication number: 20210045695
    Abstract: An oximeter probe that takes into account tissue color (e.g., skin color or melanin content) to improve accuracy when determining oxygen saturation of tissue. Light is transmitted from a light source into tissue having melanin (e.g., eumelanin or pheomelanin). Light reflected from the tissue is received by a detector. A compensation factor is determined to account for absorption due to the melanin. The oximeter uses this compensation factor and determines a melanin-corrected oxygen saturation value.
    Type: Application
    Filed: November 3, 2020
    Publication date: February 18, 2021
    Inventors: Kate LeeAnn Bechtel, Kimberly Merritt Shultz, Alex Michael Margiott, George Edward Kechter
  • Publication number: 20210007649
    Abstract: An oximeter probe determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter probe. The oximeter probe then displays a value for the oxygen saturation with the error value to indicate a quality level for the oxygen saturation and associated values used to calculate oxygen saturation.
    Type: Application
    Filed: September 29, 2020
    Publication date: January 14, 2021
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz, Scott Coleridge, Joseph Heanue
  • Patent number: 10820863
    Abstract: An oximeter probe that takes into account tissue color (e.g., skin color or melanin content) to improve accuracy when determining oxygen saturation of tissue. Light is transmitted from a light source into tissue having melanin (e.g., eumelanin or pheomelanin). Light reflected from the tissue is received by a detector. A compensation factor is determined to account for absorption due to the melanin. The oximeter uses this compensation factor and determines a melanin-corrected oxygen saturation value.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: November 3, 2020
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Kimberly Merritt Shultz, Alex Michael Margiott, George Edward Kechter
  • Patent number: 10786187
    Abstract: An oximeter probe determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter probe. The oximeter probe then displays a value for the oxygen saturation with the error value to indicate a quality level for the oxygen saturation and associated values used to calculate oxygen saturation.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: September 29, 2020
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz, Scott Coleridge, Joseph Heanue
  • Publication number: 20170303835
    Abstract: An oximeter probe determines an oxygen saturation for the tissue and determines a quality value for the oxygen saturation and associated measurements of the tissue. The quality value is calculated from reflectance data received at the detectors of the oximeter probe. The oximeter probe then displays a value for the oxygen saturation with the error value to indicate a quality level for the oxygen saturation and associated values used to calculate oxygen saturation.
    Type: Application
    Filed: April 24, 2017
    Publication date: October 26, 2017
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz, Scott Coleridge, Joseph Heanue
  • Publication number: 20170303861
    Abstract: An oximeter probe that takes into account tissue color (e.g., skin color or melanin content) to improve accuracy when determining oxygen saturation of tissue. Light is transmitted from a light source into tissue having melanin (e.g., eumelanin or pheomelanin). Light reflected from the tissue is received by a detector. A compensation factor is determined to account for absorption due to the melanin. The oximeter uses this compensation factor and determines a melanin-corrected oxygen saturation value.
    Type: Application
    Filed: April 21, 2017
    Publication date: October 26, 2017
    Inventors: Kate LeeAnn Bechtel, Kimberly Merritt Shultz, Alex Michael Margiott, George Edward Kechter