Patents by Inventor Kimberly R. Wrenn

Kimberly R. Wrenn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9103602
    Abstract: A two-phase heat transfer system includes an evaporator, a condenser, a vapor line, and a liquid return line. The evaporator includes a liquid inlet, a vapor outlet, and a capillary wick having a first surface adjacent the liquid inlet and a second surface adjacent the vapor outlet. The condenser includes a vapor inlet and a liquid outlet. The vapor line provides fluid communication between the vapor outlet and the vapor inlet. The liquid return line provides fluid communication between the liquid outlet and the liquid inlet. The wick is substantially free of back-conduction of energy from the second surface to the first surface due to an increase in a conduction path from the second surface to the first surface and due to suppression of nucleation of a working fluid from the second surface to the first surface to promote liquid superheat tolerance in the wick.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: August 11, 2015
    Assignee: Orbital ATK, Inc.
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf, Sr.
  • Patent number: 8397798
    Abstract: A two-phase heat transfer system includes an evaporator, a condenser, a vapor line, and a liquid return line. The evaporator includes a liquid inlet, a vapor outlet, and a capillary wick having a first surface adjacent the liquid inlet and a second surface adjacent the vapor outlet. The condenser includes a vapor inlet and a liquid outlet. The vapor line provides fluid communication between the vapor outlet and the vapor inlet. The liquid return line provides fluid communication between the liquid outlet and the liquid inlet. The wick is substantially free of back-conduction of energy from the second surface to the first surface due to an increase in a conduction path from the second surface to the first surface and due to suppression of nucleation of a working fluid from the second surface to the first surface to promote liquid superheat tolerance in the wick.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: March 19, 2013
    Assignee: Alliant Techsystems Inc.
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf, Sr.
  • Patent number: 6915843
    Abstract: A capillary wick for use in capillary evaporators has properties that prevent nucleation inside the body of the wick, resulting in suppression of back-conduction of heat from vapor channels to the liquid reservoir. Use of a central liquid flow channel in the wick is eliminated, and pore size in the wick is chosen to maximize available pressure for fluid pumping, while preventing nucleation in the wick body. The wick is embodied with different geometries, including cylindrical and flat. A flat capillary evaporator has substantially planar heat input surfaces for convenient mating to planar heat sources. The flat capillary evaporator is capable of being used with working fluids having high vapor pressures (i.e., greater that 10 psia). To contain the pressure of the vaporized working fluid, the opposed planar plates of the evaporator are brazed or sintered to opposing sides of a metal wick. Additionally, a terrestrial loop heat pipe and a loop heat pipe having overall flat geometry are disclosed.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: July 12, 2005
    Assignee: Swales & Associates, Inc.
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf, Sr.
  • Publication number: 20030178184
    Abstract: A capillary wick for use in capillary evaporators has properties that prevent nucleation inside the body of the wick, resulting in suppression of back-conduction of heat from vapor channels to the liquid reservoir. Use of a central liquid flow channel in the wick is eliminated, and pore size in the wick is chosen to maximize available pressure for fluid pumping, while preventing nucleation in the wick body. The wick is embodied with different geometries, including cylindrical and flat. A flat capillary evaporator has substantially planar heat input surfaces for convenient mating to planar heat sources. The flat capillary evaporator is capable of being used with working fluids having high vapor pressures (i.e., greater that 10 psia). To contain the pressure of the vaporized working fluid, the opposed planar plates of the evaporator arc brazed or sintered to opposing sides of a metal wick. Additionally, a terrestrial loop heat pipe and a loop heat pipe having overall flat geometry are disclosed.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 25, 2003
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf
  • Patent number: 6564860
    Abstract: A capillary wick for use in capillary evaporators has properties that prevent nucleation inside the body of the wick, resulting in suppression of back-conduction of heat from vapor channels to the liquid reservoir. Use of a central liquid flow channel in the wick is eliminated, and pore size in the wick is chosen to maximize available pressure for fluid pumping, while preventing nucleation in the wick body. The wick is embodied with different geometries, including cylindrical and flat. A flat capillary evaporator has substantially planar heat input surfaces for convenient mating to planar heat sources. The flat capillary evaporator is capable of being used with working fluids having high vapor pressures (i.e., greater that 10 psia). To contain the pressure of the vaporized working fluid, the opposed planar plates of the evaporator are brazed or sintered to opposing sides of a metal wick. Additionally, a terrestrial loop heat pipe and a loop heat pipe having overall flat geometry are disclosed.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: May 20, 2003
    Assignee: Swales Aerospace
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf, Sr.
  • Patent number: 6382309
    Abstract: A capillary wick for use in capillary evaporators has properties that prevent nucleation inside the body of the wick, resulting in suppression of back-conduction of heat from vapor channels to the liquid reservoir. Use of a central liquid flow channel in the wick is eliminated, and pore size in the wick is chosen to maximize available pressure for fluid pumping, while preventing nucleation in the wick body. The wick is embodied with different geometries, including cylindrical and flat. A flat capillary evaporator has substantially planar heat input surfaces for convenient mating to planar heat sources. The flat capillary evaporator is capable of being used with working fluids having high vapor pressures (i.e., greater that 10 psia). To contain the pressure of the vaporized working fluid, the opposed planar plates of the evaporator are brazed or sintered to opposing sides of a metal wick. Additionally, a terrestrial loop heat pipe and a loop heat pipe having overall flat geometry are disclosed.
    Type: Grant
    Filed: May 16, 2000
    Date of Patent: May 7, 2002
    Assignee: Swales Aerospace
    Inventors: Edward J. Kroliczek, Kimberly R. Wrenn, David A. Wolf, Sr.