Patents by Inventor Kimiyoshi Fukatsu

Kimiyoshi Fukatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901389
    Abstract: An infrared sensor including: a detection substrate that includes a first substrate in which infrared detection elements are arranged in a lattice shape and first terminals each of which is associated with one of the infrared detection elements are arranged; a readout substrate that includes a second substrate in which second terminals each of which is associated with one of the first terminals are arranged and a readout circuit that reads an electrical signal based on infrared light detected by each one of the infrared detection elements is formed; and bumps that electrically connect each one of the first terminals to one of the second terminals associated with the one of the first terminals, in which at least one of the first terminals, the second terminals, or the bumps is partially arranged at a position between the infrared detection elements that are adjacent in a top view.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: February 13, 2024
    Assignee: NEC CORPORATION
    Inventors: Tomo Tanaka, Kimiyoshi Fukatsu
  • Publication number: 20210375974
    Abstract: An infrared sensor including: a detection substrate that includes a first substrate in which infrared detection elements are arranged in a lattice shape and first terminals each of which is associated with one of the infrared detection elements are arranged; a readout substrate that includes a second substrate in which second terminals each of which is associated with one of the first terminals are arranged and a readout circuit that reads an electrical signal based on infrared light detected by each one of the infrared detection elements is formed; and bumps that electrically connect each one of the first terminals to one of the second terminals associated with the one of the first terminals, in which at least one of the first terminals, the second terminals, or the bumps is partially arranged at a position between the infrared detection elements that are adjacent in a top view.
    Type: Application
    Filed: May 20, 2021
    Publication date: December 2, 2021
    Applicant: NEC Corporation
    Inventors: Tomo TANAKA, Kimiyoshi FUKATSU
  • Patent number: 10746711
    Abstract: A method of measuring a quantity of moisture in an electrode includes at least three steps as follows: disposing an electrode, which is a measurement target sample, inside a container provided with a gas introduction pipe and a gas discharge pipe; heating the electrode by supplying inert gas heated to a predetermined temperature in advance to the inside of the container through the gas introduction pipe, and vaporizing moisture adsorbed to the electrode; and collecting the moisture vaporized from the electrode, together with the inert gas through the gas discharge pipe and determining the quantity of the collected moisture. In addition, a moisture quantity measuring apparatus includes a container that has a gas introduction pipe and a gas discharge pipe, a heating unit, and a moisture quantity measuring unit that collects moisture vaporized from a sample, through the gas discharge pipe and determines the quantity of collected moisture.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 18, 2020
    Assignee: Envision AESC Energy Devices Ltd.
    Inventors: Kimiyoshi Fukatsu, Tomohiko Hayashi
  • Patent number: 10218029
    Abstract: Electrode 6 for a secondary battery to be laminated with another type of electrode 1, with separator 20 interposed therebetween, to constitute a battery electrode assembly, is comprised of collector 8 and active material layer 7 formed on collector 8, and electrode 6 includes a coated part in which active material layer 7 is formed on collector 8 and an uncoated part in which active material layer 7 is not formed on collector 8. Active material layer 7 includes, in at least a part of the outer peripheral portion of the coated part, high density part 7a having a smaller thickness and a higher density than those of a portion other than the outer peripheral portion.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: February 26, 2019
    Assignee: NEC ENERGY DEVICES, LTD.
    Inventors: Kimiyoshi Fukatsu, Tomohiko Hayashi
  • Publication number: 20180136177
    Abstract: A method of measuring a quantity of moisture in an electrode includes at least three steps as follows: disposing an electrode, which is a measurement target sample, inside a container provided with a gas introduction pipe and a gas discharge pipe; heating the electrode by supplying inert gas heated to a predetermined temperature in advance to the inside of the container through the gas introduction pipe, and vaporizing moisture adsorbed to the electrode; and collecting the moisture vaporized from the electrode, together with the inert gas through the gas discharge pipe and determining the quantity of the collected moisture. In addition, a moisture quantity measuring apparatus includes a container that has a gas introduction pipe and a gas discharge pipe, a heating unit, and a moisture quantity measuring unit that collects moisture vaporized from a sample, through the gas discharge pipe and determines the quantity of collected moisture.
    Type: Application
    Filed: June 1, 2016
    Publication date: May 17, 2018
    Applicant: NEC ENERGY DEVICES, LTD.
    Inventors: Kimiyoshi FUKATSU, Tomohiko HAYASHI
  • Patent number: 9748556
    Abstract: The present invention relates to a negative electrode material for secondary batteries, comprising graphite; wherein the graphite comprises hexagonal crystal graphite and rhombohedral crystal graphite, and has a low-crystalline carbon coating on a surface thereof; and the graphite has exothermic peaks in the range of 600° C. or lower and in the range of 690° C. or higher in DTA measurement, or the graphite has a full width at half maximum of a (101) peak of the hexagonal crystal graphite of 0.2575° or less in XRD measurement, or the graphite has an absolute value of the difference between the lattice strain obtained from (101) plane spacing of the hexagonal crystal graphite and the lattice strain obtained from (100) plane spacing of the hexagonal crystal graphite of 7.1×10?4 or less in XRD measurement.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 29, 2017
    Assignee: NEC Corporation
    Inventors: Akio Toda, Kimiyoshi Fukatsu, Ryota Yuge, Shinji Fujieda
  • Publication number: 20170222213
    Abstract: A method for producing a negative electrode for a lithium ion battery comprising heat-treating a negative electrode active material layer that is placed on a negative electrode current collector and includes a carbon material as a negative electrode active material and a binder until dry, and placing the layer under a hydrogen-containing atmosphere.
    Type: Application
    Filed: July 28, 2015
    Publication date: August 3, 2017
    Applicant: NEC Energy Devices, Ltd.
    Inventors: Tomohiko HAYASHI, Kimiyoshi FUKATSU
  • Publication number: 20160359189
    Abstract: Electrode 6 for a secondary battery to be laminated with another type of electrode 1, with separator 20 interposed therebetween, to constitute a battery electrode assembly, is comprised of collector 8 and active material layer 7 formed on collector 8, and electrode 6 includes a coated part in which active material layer 7 is formed on collector 8 and an uncoated part in which active material layer 7 is not formed on collector 8. Active material layer 7 includes, in at least a part of the outer peripheral portion of the coated part, high density part 7a having a smaller thickness and a higher density than those of a portion other than the outer peripheral portion.
    Type: Application
    Filed: January 16, 2015
    Publication date: December 8, 2016
    Applicant: NEC ENERGY DEVICES, LTD.
    Inventors: Kimiyoshi FUKATSU, Tomohiko HAYASHI
  • Publication number: 20150118566
    Abstract: The present invention relates to a negative electrode material for secondary batteries, comprising graphite; wherein the graphite comprises hexagonal crystal graphite and rhombohedral crystal graphite, and has a low-crystalline carbon coating on a surface thereof; and the graphite has exothermic peaks in the range of 600° C. or lower and in the range of 690° C. or higher in DTA measurement, or the graphite has a full width at half maximum of a (101) peak of the hexagonal crystal graphite of 0.2575° or less in XRD measurement, or the graphite has an absolute value of the difference between the lattice strain obtained from (101) plane spacing of the hexagonal crystal graphite and the lattice strain obtained from (100) plane spacing of the hexagonal crystal graphite of 7.1×10?4 or less in XRD measurement.
    Type: Application
    Filed: March 6, 2013
    Publication date: April 30, 2015
    Applicant: NEC Corporation
    Inventors: Akio Toda, Kimiyoshi Fukatsu, Ryota Yuge, Shinji Fujieda
  • Patent number: 7974328
    Abstract: The present invention provides a surface-emission type semiconductor laser wherein an effective length of a cavity is reduced, thereby enabling to realize a higher-speed direct modulation. In the surface-emission type semiconductor laser according to the present invention, when supposing the optical path length (L) of a resonator part relative to a lasing wavelength ?0 to be given as 0.9×?0?L?1.1×?0, and denoting the refractive indexes of a high refractive index layer and a low refractive index layer of a dielectric DBR by nH1 and nL1; the average refractive index within an optical path length ?0/4 in the semiconductor in contact with the dielectric DBR by nS1; and the refractive indexes of the high refractive index layer and the low refractive index layer of a semiconductor DBR by nH2 and nL2, respective materials to be used are selected so as to satisfy the following conditions (1) and (2): nH1>f(nS1)nL12+g(nS1)nL1+h(nS1),??(1) where f(nS1)=0.0266 nS12?0.2407 nS1+0.6347; g(nS1)=?0.0508 nS12+0.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: July 5, 2011
    Assignee: NEC Corporation
    Inventors: Naofumi Suzuki, Masayoshi Tsuji, Takayoshi Anan, Kenichiro Yashiki, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
  • Patent number: 7940828
    Abstract: An optical communication system for performing data transmission with optical signals comprises a first optical transmitter and a first optical receiver. The first optical transmitter has a first surface-emitting laser including an active layer of a multiple quantum well structure having a quantum well layer of InxGa1-xAs (0.15?x?0.35), the first surface-emitting laser having an oscillation wavelength ranging from 1000 nm to 1100 nm inclusive. The first optical transmitter transmits an optical signal generated by the first surface-emitting laser. The first optical receiver is connected to the first optical transmitter by a first optical transfer path, and receives the optical signal transmitted from the first optical transmitter through the first optical transfer path.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: May 10, 2011
    Assignee: NEC Corporation
    Inventors: Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki
  • Patent number: 7881358
    Abstract: A surface emitting laser is provided with a first multilayer Bragg reflecting mirror including a first layer, a second multilayer Bragg reflecting mirror including a second layer, and an optical resonator unit that is held between these multilayer Bragg reflecting mirrors and includes an active layer. Further, the optical resonator unit contacts with the first layer and second layer respectively. The effective refraction index neff of the resonator unit is larger than either the first layer or the second layer, and an optical length neffL of the optical resonator unit has a relationship with an oscillating wavelength ? of the surface emitting laser to satisfy the following relationship: 0.5?<neffL?0.7?.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 1, 2011
    Assignee: NEC Corporation
    Inventors: Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki, Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
  • Patent number: 7817691
    Abstract: It is enabled to provide that a light emitting device have an electron blocking layer (106) positioned between tunnel junctions (107, 108) and an active layer (104). The electron blocking layer (106) has an energy of conduction band edge higher than that of the active layer (605), and is composed of a material containing substantially no aluminum. It suppresses leakage of electrons from an n-type layer through a p-layer to an n-type layer. It is also enabled to provide that a light emitting device is capable of preventing the electron blocking layer (106) from being oxidized in the process of manufacturing by using a layer containing no aluminum for the electron blocking layer (106).
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: October 19, 2010
    Assignee: NEC Corporation
    Inventors: Naofumi Suzuki, Kimiyoshi Fukatsu
  • Publication number: 20100034233
    Abstract: The present invention provides a surface-emission type semiconductor laser wherein an effective length of a cavity is reduced, thereby enabling to realize a higher-speed direct modulation. In the surface-emission type semiconductor laser according to the present invention, when supposing the optical path length (L) of a resonator part relative to a lasing wavelength ?0 to be given as 0.9×?0?L?1.1×?0, and denoting the refractive indexes of a high refractive index layer and a low refractive index layer of a dielectric DBR by nH1 and nL1; the average refractive index within an optical path length ?0/4 in the semiconductor in contact with the dielectric DBR by nS1; and the refractive indexes of the high refractive index layer and the low refractive index layer of a semiconductor DBR by nH2 and nL2, respective materials to be used are selected so as to satisfy the following conditions (1) and (2): nH1>f(nS1)nL12+g(nS1)nL1+h(nS1),??(1) where f(nS1)=0.0266 nS12?0.2407 nS1+0.6347; g(nS1)=?0.0508 nS12+0.
    Type: Application
    Filed: March 14, 2008
    Publication date: February 11, 2010
    Inventors: Naofumi Suzuki, Masayoshi Tsuji, Takayoshi Anan, Kenichiro Yashiki, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
  • Publication number: 20100020835
    Abstract: A surface emitting laser is provided with a first multilayer Bragg reflecting mirror including a first layer, a second multilayer Bragg reflecting mirror including a second layer, and an optical resonator unit that is held between these multilayer Bragg reflecting mirrors and includes an active layer. Further, the optical resonator unit contacts with the first layer and second layer respectively. The effective refraction index neff of the resonator unit is larger than either the first layer or the second layer, and an optical length neffL of the optical resonator unit has a relationship with an oscillating wavelength ? of the surface emitting laser to satisfy the following relationship: 0.5?<neffL?0.7?.
    Type: Application
    Filed: December 18, 2007
    Publication date: January 28, 2010
    Inventors: Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki, Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takeshi Akagawa
  • Publication number: 20090196317
    Abstract: It is enabled to provide that a light emitting device have an electron blocking layer (106) positioned between tunnel junctions (107, 108) and an active layer (104). The electron blocking layer (106) has an energy of conduction band edge higher than that of the active layer (605), and is composed of a material containing substantially no aluminum. It suppresses leakage of electrons from an n-type layer through a p-layer to an n-type layer It is also enabled to provide that a light emitting device is capable of preventing the electron blocking layer (106) from being oxidized in the process of manufacturing by using a layer containing no aluminum for the electron blocking layer (106).
    Type: Application
    Filed: May 17, 2007
    Publication date: August 6, 2009
    Applicant: NEC CORPORATION
    Inventors: Naofumi Suzuki, Kimiyoshi Fukatsu
  • Publication number: 20090080488
    Abstract: A surface emitting laser including a semiconductor substrate, a semiconductor substrate, a first reflector formed on the semiconductor substrate, an active layer formed on the first reflector, a tunnel junction layer formed above a part of the active layer, a semiconductor spacer layer which covers the tunnel junction layer, a second reflector formed on the semiconductor spacer layer in a region above the tunnel junction layer, a first electrode formed in the periphery of the second reflector on the semiconductor spacer layer, and a second electrode electrically connected to a layer lower than the active layer, wherein a layer thickness of the semiconductor spacer layer in the region directly above the tunnel junction layer is thinner than the layer thickness of the semiconductor spacer layer in the region directly below the first electrode.
    Type: Application
    Filed: September 24, 2008
    Publication date: March 26, 2009
    Applicant: NEC CORPORATION
    Inventors: Hiroshi HATAKEYAMA, Naofumi SUZUKI, Kenichiro YASHIKI, Takeshi AKAGAWA, Takayoshi ANAN, Masayoshi TSUJI, Kimiyoshi FUKATSU
  • Publication number: 20090028201
    Abstract: An optical communication system for performing data transmission with optical signals comprises a first optical transmitter and a first optical receiver. The first optical transmitter has a first surface-emitting laser including an active layer of a multiple quantum well structure having a quantum well layer of InxGa1-xAs (0.15?x?0.35), the first surface-emitting laser having an oscillation wavelength ranging from 1000 nm to 1100 nm inclusive. The first optical transmitter transmits an optical signal generated by the first surface-emitting laser. The first optical receiver is connected to the first optical transmitter by a first optical transfer path, and receives the optical signal transmitted from the first optical transmitter through the first optical transfer path.
    Type: Application
    Filed: December 27, 2006
    Publication date: January 29, 2009
    Applicant: NEC CORPORATION
    Inventors: Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki
  • Publication number: 20080317476
    Abstract: A vehicle-mounted optical communication system, which uses an optical signal to perform data transmission, comprises a first optical transmitter and an optical receiver. The first optical transmitter, which is mounted on a vehicle, has a multiple quantum well structure, in which an active layer has a quantum well layer of InxGa1-xAs (where 0.15?x?0.35), and includes a first surface emitting laser the oscillation wavelength of which is between 1000 nm and 1100 nm inclusive. The first optical transmitter transmits an optical signal generated by the first surface emitting laser. The optical receiver, which is mounted on the vehicle and connected to the first optical transmitter via a first optical transmission path, receives the optical signal, which was transmitted by the first optical transmitter, via the first optical transmission path.
    Type: Application
    Filed: December 28, 2006
    Publication date: December 25, 2008
    Applicant: NEC CORPORATION
    Inventors: Masayoshi Tsuji, Hiroshi Hatakeyama, Kimiyoshi Fukatsu, Takayoshi Anan, Naofumi Suzuki, Kenichiro Yashiki