Patents by Inventor Kimmo Taskinen

Kimmo Taskinen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6879642
    Abstract: Amplitudes of signals produced by a digital modulator can be clipped so that instead of processing the output vector of the digital modulator or it's component vectors, processing is applied to the base band I and Q signals prior to modulation. The I- and Q signals are applied to an input of a clipping circuit. Predetermined limit values are also applied to another input of the clipping circuit. The clipping circuit rotates on the I-Q vector towards the limit vector. At the same time the limit vector is rotated towards the I-Q vector. Rotations are performed by using Cordic algorithm. After rotations have been completed, the rotated I-Q vector is aligned with the original limit vector, and the rotated limit is aligned with the original I-Q vector. Then the length of the rotated I-Q vector will be compared with the original limit vector. If the rotated I-Q vector is shorter than the limit vector, then the original I-Q signals are output signals from the clipping circuit.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: April 12, 2005
    Assignee: Nokia Corporation
    Inventor: Kimmo Taskinen
  • Publication number: 20020197966
    Abstract: Amplitudes of signals produced by a digital modulator can be clipped so that instead of processing the output vector of the digital modulator or it's component vectors, processing is applied to the base band I and Q signals prior to modulation. The I- and Q signals are applied to an input of a clipping circuit. Predetermined limit values are also applied to another input of the clipping circuit. The clipping circuit rotates on the I-Q vector towards the limit vector. At the same time the limit vector is rotated towards the I-Q vector. Rotations are performed by using Cordic algorithm. After rotations have been completed, the rotated I-Q vector is aligned with the original limit vector, and the rotated limit is aligned with the original I-Q vector. Then the length of the rotated I-Q vector will be compared with the original limit vector. If the rotated I-Q vector is shorter than the limit vector, then the original I-Q signals are output signals from the clipping circuit.
    Type: Application
    Filed: July 15, 2002
    Publication date: December 26, 2002
    Inventor: Kimmo Taskinen