Patents by Inventor Kinya Tawara

Kinya Tawara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6013530
    Abstract: In a sulfur determining process, comprising a hydrocracking step of a sample in a ceramic reactor and darkness measuring step of lead acetate soaked tape by reaction of produced H.sub.2 S, an improvement is made. The improvement comprises at least one of procedure selected from the group consisting of introduction of CO.sub.2 in the ceramic reactor, using an inverted AC current from stabilized DC current as an electric supply for the darkness measuring step, covering a box containing the darkness measuring sensor and a sensor circuit with a heat insulating material, A/D converting a differential output and making moving averages for making a noiseless record, and charging the differential output to a condenser through an electric resistance for making a noiseless record. Sulfur content is measured from a record of improved output. According to the improvements, an economic conventional ceramic reactor becomes available, and limit of sulfur determination of 25 ppb is improved to 2 ppb in the best case.
    Type: Grant
    Filed: June 9, 1997
    Date of Patent: January 11, 2000
    Inventor: Kinya Tawara
  • Patent number: 4981832
    Abstract: A catalyst composition for the hydrogenation of heavy hydrocarbon oil, where the catalyst composition comprises at least one active ingredient for hydrogenation supported on a porous alumina carrier and has the following characteristics: (1) the total volume of the pores therein is from 0.4 to 1.0 ml/g; (2) the mean pore diameter of pores having a pore diameter of from 5 to 400 .ANG. is from 60 to 140 .ANG.; (3) the volume of pores having a pore size within .+-.25% of the mean pore diameter of pores having a pore diameter of from 5 to 400 .ANG. is from 60 to 98% of the volume of pores having a pore diameter of from 5 to 400 .ANG.; (4) the volume of pores having a pore diameter of from 400 to 5000 .ANG. is from 2 to 9% of the total volume of the entire pores; (5) the ratio (mm.sup.2 /mm.sup.3) of the outer surface area of a molded catalyst powder to the volume thereof is from 4 to 8; and (6) all points in the interior of the molded catalyst particle are positioned within 0.05 to 0.
    Type: Grant
    Filed: July 3, 1989
    Date of Patent: January 1, 1991
    Assignee: Research Association for Residual Oil Processing
    Inventors: Kinya Tawara, Kazuyoshi Kudoh, Kazushi Usui, Tomohiro Yoshinari, Shigenori Nakashizu
  • Patent number: 4732886
    Abstract: A hydrogen treating catalyst comprising alumina, 3 to 7% by weight of nickel calculating as NiO and 10 to 20% by weight of molybdenum calculating as MoO.sub.3, which has a total pore volume of 0.55 to 1.0 ml/g, an average pore diameter of 50 to 250 .ANG., and factor P of 3 to 4, wherein the volume of pores having a diameter of larger than the average pore diameter+10 .ANG. and smaller than the average pore diameter+500 .ANG. is 10 to 30% of the total pore volume in catalyst pore distribution, wherein the factor P is represented by the following formula:P=PD/Swherein PD represents an average pore diameter measured by a mercury porosimeter which is the pore diameter (.ANG.) corresponding to the pressure at which 1/2 of the total pore volume is saturated with mercury, and S represents a proportion (%) of volume of pores in a range of PD.+-.5 .ANG..
    Type: Grant
    Filed: November 20, 1986
    Date of Patent: March 22, 1988
    Assignee: Research Association for Residual Oil Processing
    Inventors: Takeshi Tomino, Mitsugu Yumoto, Kinya Tawara
  • Patent number: 4585748
    Abstract: A hydrocarbon conversion crystalline catalyst composition is described comprising 5 to 90% by weight of a crystalline aluminosilicate zeolite, 5 to 90% by weight of a porous inorganic oxide, 1 to 20% by weight of a Group VI metal component (calculated as the corresponding oxide), 0 to 7% by weight of a Group VIII metal component (calculated as the corresponding oxide), and at least one of phosphorus and boron components. The weight ratio of the amount of the phosphorus+boron components (calculated as elemental phosphorus and elemental boron) to the Group VI metal component (calculated as the corresponding oxide) is from 0.01:1 to 0.08:1 and the weight ratio of each of phosphorus and boron to the Group VI metal component is below 0.045:1. This composition is prepared by contacting a support comprising the crystalline aluminosilicate zeolite and inorganic oxide with a solution containing a Group VI metal component and at least one phosphorus or boron component.
    Type: Grant
    Filed: May 25, 1984
    Date of Patent: April 29, 1986
    Assignee: Research Association for Residual Oil Processing
    Inventors: Kazushi Usui, Kinya Tawara
  • Patent number: 4368337
    Abstract: A process is described for converting glycol dialkyl ether without substantial formation of olefin oligomers by reaction with water, comprising reacting a feed glycol di-tertiary alkyl ether represented by structural formula (A) with water using a strongly acidic cation-exchange resin as a catalyst and a reaction temperature of from 40.degree. C. to 150.degree. C. under a pressure of from 1 to 70 kg/cm.sup.2 (absolute pressure) in a molar ratio of water/feed glycol di-tertiary alkyl ether represented by the structural formula (A) of from 0.
    Type: Grant
    Filed: March 30, 1981
    Date of Patent: January 11, 1983
    Assignee: Maruzen Oil Co., Ltd.
    Inventors: Kinya Tawara, Hiroki Kamiyama, Shigenori Nakashizu, Takashi Kaneko, Tadahiro Wakui, Tadashi Matsumoto
  • Patent number: 4101590
    Abstract: A process for the separation and purification of vinylphenol which comprises contacting crude vinylphenol containing vinylphenol and impurities such as phenol, alkylphenols, vinylphenol polymers and hydrocarbons countercurrently with an aqueous alkali solution together with a specific organic solvent.Vinylphenol obtained is useful as the raw material for the production of polyvinylphenol or a vinylphenol copolymer which is utilized as a thermoplastic resin, an ion exchange membrane, an adhesive, a glass fiber-reinforced composite or the like.
    Type: Grant
    Filed: August 23, 1976
    Date of Patent: July 18, 1978
    Assignee: Maruzen Oil Co., Ltd.
    Inventors: Mikio Sato, Kinya Tawara, Shinpachiro Iwaki, Kohji Matsumoto, Kenichi Sekine