Patents by Inventor Kira Vladimirovna Yudina

Kira Vladimirovna Yudina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913314
    Abstract: A method is offered to predict and prevent the event of fracture hit (direct fluid communication) between a parent well and a child (active) well. The growth of a child well creates 3D stress field in the vicinity of a parent well. The growth of a child well is simulated using the geomechanic-transport model. A model of interaction between the child well and parent well is provided. The simulations for different job designs create a set of pressure scenario in the parent both for the cases with and without fracture hit (fracture hit catalogue). Comparison (matching) of actual pressure data in the parent and child well with the pre-calculated pressure scenarios indicate the risk of fracture development with a fracture hit, which means a stop in fracturing stimulation.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: February 27, 2024
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Roman Korkin, Andrey Fedorov, Artem Kabannik, Kira Vladimirovna Yudina, Dmitry Badazhkov, Jared Bruns, Xiaowei Weng, Aleksandra Khudorozhkova
  • Publication number: 20230020671
    Abstract: A method is offered to predict and prevent the event of fracture hit (direct fluid communication) between a parent well and a child (active) well. The growth of a child well creates 3D stress field in the vicinity of a parent well. The growth of a child well is simulated using the geomechanic-transport model. A model of interaction between the child well and parent well is provided. The simulations for different job designs create a set of pressure scenario in the parent both for the cases with and without fracture hit (fracture hit catalogue). Comparison (matching) of actual pressure data in the parent and child well with the pre-calculated pressure scenarios indicate the risk of fracture development with a fracture hit, which means a stop in fracturing stimulation.
    Type: Application
    Filed: December 16, 2020
    Publication date: January 19, 2023
    Inventors: Roman KORKIN, Andrey FEDOROV, Artem KABANNIK, Kira Vladimirovna YUDINA, Dmitry BADAZHKOV, Jared BRUNS, Xiaowei WENG, Aleksandra KHUDOROZHKOVA
  • Patent number: 10421897
    Abstract: This method is designed to facilitate the well treatment with the possibilities for non-uniform/heterogeneous proppant placement in the extended and branched fractures produced by hydraulic fracturing. The essence of the method is to inject a proppant-bearing gel into the wellbore drilled into a productive formation. The low-viscosity fracturing fluid is injected into the wellbore together with the gel fluid (simultaneously or in turns). The method also provides for the injection of gas into the proppant-bearing gel and/or the low-viscosity fluid. The gas can be injected upstream of the junction point, at the junction point, or downstream of the junction point of the flows of the proppant-bearing gel and the low-viscosity fluid. The method further provides for the division of the gel fluid into the separate agglomerates with their subsequent injection into the fractures in the subterranean formation to form the proppant structures in the fracture.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: September 24, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Sergey Sergeevich Skiba, Kira Vladimirovna Yudina, Maxim Pavlovich Yutkin, Bernhard Rudolf Lungwitz, Andrey Vladimirovich Yakovlev, Mohan Kanaka Raju Panga, Konstantin Viktorovich Vidma, Alexey Vladimirovich Alekseev, Chad Kraemer, Geza Horvath Szabo
  • Publication number: 20180362838
    Abstract: This method is designed to facilitate the well treatment with the possibilities for non-uniform/heterogeneous proppant placement in the extended and branched fractures produced by hydraulic fracturing. The essence of the method is to inject a proppant-bearing gel into the wellbore drilled into a productive formation. The low-viscosity fracturing fluid is injected into the wellbore together with the gel fluid (simultaneously or in turns). The method also provides for the injection of gas into the proppant-bearing gel and/or the low-viscosity fluid. The gas can be injected upstream of the junction point, at the junction point, or downstream of the junction point of the flows of the proppant-bearing gel and the low-viscosity fluid. The method further provides for the division of the gel fluid into the separate agglomerates with their subsequent injection into the fractures in the subterranean formation to form the proppant structures in the fracture.
    Type: Application
    Filed: November 30, 2015
    Publication date: December 20, 2018
    Inventors: Sergey Sergeevich SKIBA, Kira Vladimirovna YUDINA, Maxim Pavlovich YUTKIN, Bernhard Rudolf LUNGWITZ, Andrey Vladimirovich YAKOVLEV, Mohan Kanaka Raju PANGA, Konstantin Viktorovich VIDMA, Alexey Vladimirovich ALEKSEEV, Chad KRAEMER, Geza HORVATH SZABO
  • Patent number: 9952351
    Abstract: A technique facilitates the study of complex fracture networks. A slot manifold is constructed with a system of branched thin channels, e.g. slots, which are joined at intersections. Fluid is flowed through the system of branched thin channels and through an intersection or intersections joining the channels in a manner which enables evaluation of fluid flow. A flow distribution device is used to allow or block flow of the fluid along specific branches of the system of branched thin channels to facilitate evaluation of fluid flow as a fluid moves through various angular changes and/or flow gap width changes from one channel to another.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: April 24, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Dmitry Sergeevich Kuznetsov, Sergey Mikhailovich Makarychev-Mikhailov, Kira Vladimirovna Yudina, Alexey Viktorovich Zinchenko
  • Publication number: 20160320528
    Abstract: A technique facilitates the study of complex fracture networks. A slot manifold is constructed with a system of branched thin channels, e.g. slots, which are joined at intersections. Fluid is flowed through the system of branched thin channels and through an intersection or intersections joining the channels in a manner which enables evaluation of fluid flow. A flow distribution device is used to allow or block flow of the fluid along specific branches of the system of branched thin channels to facilitate evaluation of fluid flow as a fluid moves through various angular changes and/or flow gap width changes from one channel to another.
    Type: Application
    Filed: December 31, 2013
    Publication date: November 3, 2016
    Inventors: Dmitry Sergeevich Kuznetsov, Sergey Mikhailovich Makarychev-Mikhailov, Kira Vladimirovna Yudina, Alexey Viktorovich Zinchenko