Patents by Inventor Kiran N. Solanki

Kiran N. Solanki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10851440
    Abstract: Novel metallic systems and methods for their fabrication provide high temperature machine parts formed of a consolidated nano-crystalline metallic material. The material comprises a matrix formed of a solvent metal having a melting point greater than 1,250° C. with crystalline grains having diameters of no more than about 500 nm, and a plurality of dispersed metallic particles formed on the basis of a solute metal in the solvent metal matrix and having diameters of no more than about 200 nm. The particle density along the grain boundary of the matrix is as high as about 2 nm2 of grain boundary area per particle so as to substantially block grain boundary motion and rotation and limit creep at temperatures above 35% of the melting point of the consolidated nano-crystalline metallic material. The machine parts formed may include turbine blades, gears, hypersonics, radiation shielding, and other high temperature parts.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: December 1, 2020
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kristopher Allen Darling, Scott Martin Grendahl, Laszlo John Kecskes, Kiran N. Solanki, Heather Ann Murdoch, Thomas Lee Luckenbaugh, Anthony James Roberts, Billy Chad Hornbuckle
  • Patent number: 10766071
    Abstract: Novel metallic systems and methods for their fabrication provide an extreme creep-resistant nano-crystalline metallic material. The material comprises a matrix formed of a solvent metal with crystalline grains having diameters of no more than about 500 nm, and a plurality of dispersed metallic particles formed on the basis of a solute metal in the solvent metal matrix and having diameters of no more than about 200 nm. The particle density along the grain boundary of the matrix is as high as about 2 nm2 of grain boundary area per particle so as to substantially block grain boundary motion and rotation and limit creep at temperatures above 35% of the melting point of the material.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: September 8, 2020
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Laszlo J. Kecskes, Kristopher A. Darling, Rajiv S. Mishra, Yuri Mishin, Kiran N. Solanki, Mansa Rajagopalan
  • Publication number: 20190119788
    Abstract: Novel metallic systems and methods for their fabrication provide high temperature machine parts formed of a consolidated nano-crystalline metallic material. The material comprises a matrix formed of a solvent metal having a melting point greater than 1,250° C. with crystalline grains having diameters of no more than about 500 nm, and a plurality of dispersed metallic particles formed on the basis of a solute metal in the solvent metal matrix and having diameters of no more than about 200 nm. The particle density along the grain boundary of the matrix is as high as about 2 nm2 of grain boundary area per particle so as to substantially block grain boundary motion and rotation and limit creep at temperatures above 35% of the melting point of the consolidated nano-crystalline metallic material. The machine parts formed may include turbine blades, gears, hypersonics, radiation shielding, and other high temperature parts.
    Type: Application
    Filed: September 13, 2018
    Publication date: April 25, 2019
    Inventors: Kristopher Allen Darling, Scott Martin Grendahl, Laszlo John Kecskes, Kiran N. Solanki, Heather Ann Murdoch, Thomas Lee Luckenbaugh, Anthony James Roberts, Billy Chad Hornbuckle
  • Publication number: 20180229308
    Abstract: Novel metallic systems and methods for their fabrication provide an extreme creep-resistant nano-crystalline metallic material. The material comprises a matrix formed of a solvent metal with crystalline grains having diameters of no more than about 500 nm, and a plurality of dispersed metallic particles formed on the basis of a solute metal in the solvent metal matrix and having diameters of no more than about 200 nm. The particle density along the grain boundary of the matrix is as high as about 2 nm2 of grain boundary area per particle so as to substantially block grain boundary motion and rotation and limit creep at temperatures above 35% of the melting point of the material.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 16, 2018
    Inventors: Laszlo J. Kecskes, Kristopher A. Darling, Rajiv S. Mishra, Yuri Mishin, Kiran N. Solanki, Mansa Rajagopalan