Patents by Inventor Kiran Nimmagadda

Kiran Nimmagadda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200086125
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 10518091
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: December 31, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 10391324
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 27, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Publication number: 20180104498
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 19, 2018
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Patent number: 9872995
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: January 23, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Publication number: 20170340886
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Application
    Filed: August 11, 2017
    Publication date: November 30, 2017
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 9737713
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: August 22, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Publication number: 20160129269
    Abstract: Compliance voltage generation circuitry for a medical device is disclosed. The circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A boost signal from compliance voltage monitor-and-adjust logic circuitry is processed with a telemetry enable signal to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller. By contrast, the boost converter is allowed to operate during periods of no telemetry, when magnetic interference is not a concern.
    Type: Application
    Filed: January 5, 2016
    Publication date: May 12, 2016
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Patent number: 9320899
    Abstract: An implantable stimulation device that includes output current sources and/or sinks configured to provide an output current for a load (i.e., tissue). The output path of the output current source or sink comprises a transistor which operates in a linear mode instead of a saturation mode. Because operation in a linear mode results in smaller drain-to-source voltage drops, power consumption in the output current source or sink (and hence in the implantable stimulator) is reduced, reducing battery or other power source requirements. Operation in the linear mode is facilitated by a load in an input path and a load in the output path (which bears the output current). The loads can be active transistors or passive resistors. A feedback circuit (e.g., an operational amplifier) receives voltages that build up across these loads, and sends a control signal to the gate of the transistor to ensure its linear operation.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 26, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Yuping He, Kiran Nimmagadda
  • Publication number: 20160082260
    Abstract: An improved architecture for an implantable medical device such as an implantable pulse generator (IPG) is disclosed. In one embodiment, the various functional blocks for the IPG are incorporated into a signal integrated circuit (IC). Each of the functional blocks communicates with each other, and with other off-chip devices if necessary, via a centralized bus governed by a communication protocol. To communicate with the bus and to adhere to the protocol, each circuit block includes bus interface circuitry adherent with that protocol. Because each block complies with the protocol, any given block can easily be modified or upgraded without affecting the design of the other blocks, facilitating debugging and upgrading of the IPG circuitry. Moreover, because the centralized bus can be taken off the integrated circuit, extra circuitry can easily be added off chip to modify or add functionality to the IPG.
    Type: Application
    Filed: December 7, 2015
    Publication date: March 24, 2016
    Inventors: Paul J. Griffith, Jordi Parramon, Goran Marnfeldt, Daniel Aghassian, Kiran Nimmagadda, Emanuel Feldman, Jess W. Shi
  • Patent number: 9233254
    Abstract: Improved compliance voltage generation circuitry for a medical device is disclosed. The improved circuitry in one embodiment comprises a boost converter and a charge pump, either of which is capable of generating an appropriate compliance voltage from the voltage of the battery in the device. A telemetry enable signal indicating whether the implant's transmitter, receiver, or both, have been enabled is received. A “boost” signal from compliance voltage monitor-and-adjust logic circuitry is processed with the telemetry enable signal and its inverse to selectively enable either the charge pump or the boost converter: if the telemetry enable signal is not active, the boost converter is used to generate the compliance voltage; if the telemetry enable signal is active, the charge pump is used. Because the charge pump circuitry does not produce a magnetic field, the charge pump will not interfere with magnetically-coupled telemetry between the implant and an external controller.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: January 12, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Kiran Nimmagadda, Md. Mizanur Rahman, Jordi Parramon
  • Publication number: 20150258340
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Application
    Filed: June 2, 2015
    Publication date: September 17, 2015
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 9072904
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: July 7, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He
  • Patent number: 9042997
    Abstract: An improved implantable pulse generator (IPG) containing improved telemetry circuitry is disclosed. The IPG includes charging and telemetry coils within the IPG case, which increases their mutual inductance and potential to interfere with each other; particularly problematic is interference to the telemetry coil caused by the charging coil. To combat this, improved telemetry circuitry includes decoupling circuitry for decoupling the charging coil during periods of telemetry between the IPG and an external controller. Such decoupling circuitry can comprise use of pre-existing LSK circuitry during telemetry, or new discrete circuitry dedicated to decoupling. The decoupling circuitry is designed to prevent or at least reduce induced current flowing through the charging coil during data telemetry.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: May 26, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Md. Mizanur Rahman, Kiran Nimmagadda, Jordi Parramon, Emanuel Feldman
  • Publication number: 20140277270
    Abstract: An implantable stimulation device that includes output current sources and/or sinks configured to provide an output current for a load (i.e., tissue). The output path of the output current source or sink comprises a transistor which operates in a linear mode instead of a saturation mode. Because operation in a linear mode results in smaller drain-to-source voltage drops, power consumption in the output current source or sink (and hence in the implantable stimulator) is reduced, reducing battery or other power source requirements. Operation in the linear mode is facilitated by a load in an input path and a load in the output path (which bears the output current). The loads can be active transistors or passive resistors. A feedback circuit (e.g., an operational amplifier) receives voltages that build up across these loads, and sends a control signal to the gate of the transistor to ensure its linear operation.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Yuping He, Kiran Nimmagadda
  • Patent number: 8750985
    Abstract: In one embodiment, the present invention provides an implantable stimulation device that includes output current sources and/or sinks configured to provide an output current for a load (i.e., tissue). The output path of the output current source or sink comprises a transistor which operates in a linear mode instead of a saturation mode. Because operation in a linear mode results in smaller drain-to-source voltage drops, power consumption in the output current source or sink (and hence in the implantable stimulator) is reduced, reducing battery or other power source requirements. Operation in the linear mode is facilitated in useful embodiments by a load in an input path (into which a reference current is sent) and a load in the output path (which bears the output current). The loads can be active transistors or passive resistors. A feedback circuit (e.g.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: June 10, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Yuping He, Kiran Nimmagadda
  • Publication number: 20140058479
    Abstract: An improved implantable pulse generator (IPG) containing improved telemetry circuitry is disclosed. The IPG includes charging and telemetry coils within the IPG case, which increases their mutual inductance and potential to interfere with each other; particularly problematic is interference to the telemetry coil caused by the charging coil. To combat this, improved telemetry circuitry includes decoupling circuitry for decoupling the charging coil during periods of telemetry between the IPG and an external controller. Such decoupling circuitry can comprise use of pre-existing LSK circuitry during telemetry, or new discrete circuitry dedicated to decoupling. The decoupling circuitry is designed to prevent or at least reduce induced current flowing through the charging coil during data telemetry.
    Type: Application
    Filed: October 3, 2013
    Publication date: February 27, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Md. Mizanur Rahman, Kiran Nimmagadda, Jordi Parramon, Emanuel Feldman
  • Patent number: 8649858
    Abstract: An improved architecture for an implantable medical device such as an implantable pulse generator (IPG) is disclosed. In one embodiment, the various functional blocks for the IPG are incorporated into a signal integrated circuit (IC). Each of the functional blocks communicate with each other, and with other off-chip devices if necessary, via a centralized bus governed by a communication protocol. To communicate with the bus and to adhere to the protocol, each circuit block includes bus interface circuitry adherent with that protocol. Because each block complies with the protocol, any given block can easily be modified or upgraded without affecting the design of the other blocks, facilitating debugging and upgrading of the IPG circuitry. Moreover, because the centralized bus can be taken off the integrated circuit, extra circuitry can easily be added off chip to modify or add functionality to the IPG without the need for a major redesign of the main IPG IC.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: February 11, 2014
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Paul J. Griffith, Jordi Parramon, Goran N. Marnfeldt, Daniel Aghassian, Kiran Nimmagadda, Emanuel Feldman, Jess W. Shi
  • Patent number: 8577474
    Abstract: An improved implantable pulse generator (IPG) containing improved telemetry circuitry is disclosed. The IPG includes charging and telemetry coils within the IPG case, which increases their mutual inductance and potential to interfere with each other; particularly problematic is interference to the telemetry coil caused by the charging coil. To combat this, improved telemetry circuitry includes decoupling circuitry for decoupling the charging coil during periods of telemetry between the IPG and an external controller. Such decoupling circuitry can comprise use of pre-existing LSK circuitry during telemetry, or new discrete circuitry dedicated to decoupling. The decoupling circuitry is designed to prevent or at least reduce induced current flowing through the charging coil during data telemetry.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: November 5, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Md. Mizanur Rahman, Kiran Nimmagadda, Jordi Parramon, Emanuel Feldman
  • Patent number: 8369963
    Abstract: Disclosed herein are circuits and methods for a multi-electrode implantable stimulator device incorporating one decoupling capacitor in the current path established via at least one cathode electrode and at least one anode electrode. In one embodiment, the decoupling capacitor may be hard-wired to a dedicated anode on the device. The cathodes are selectively activatable via stimulation switches. In another embodiment, any of the electrodes on the devices can be selectively activatable as an anode or cathode. In this embodiment, the decoupling capacitor is placed into the current path via selectable anode and cathode stimulation switches. Regardless of the implementation, the techniques allow for the benefits of capacitive decoupling without the need to associate decoupling capacitors with every electrode on the multi-electrode device, which saves space in the body of the device.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 5, 2013
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jordi Parramon, Kiran Nimmagadda, Emanuel Feldman, Yuping He