Patents by Inventor Kirby Alan Smith

Kirby Alan Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240287658
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. One or both of the compartmentalization network and the pressure vessel may be formed by a 3D printing process, such as by Selective Laser Melting (SLM) and/or Direct Metal Laser Sintering (DMLS). The hydrogen storage alloy is a non-pyrophoric AB2 Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Application
    Filed: May 3, 2024
    Publication date: August 29, 2024
    Inventors: Henry U. Lee, Baoquan Huang, Benjamin S. Chao, Kirby Alan Smith
  • Patent number: 12054815
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. The compartmentalization network includes a plurality of thermally conductive elongate tubes positioned within the pressure vessel forming a coherent, tightly packed tube bundle providing a thermally conductive network between the hydrogen storage alloy and the pressure vessel. The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: August 6, 2024
    Assignee: HARNYSS IP, LLC
    Inventors: Benjamin S. Chao, Baoquan Huang, Henry U. Lee, Kirby Alan Smith
  • Patent number: 12054814
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. One or both of the compartmentalization network and the pressure vessel may be formed by a 3D printing process, such as by Selective Laser Melting (SLM) and/or Direct Metal Laser Sintering (DMLS). The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: August 6, 2024
    Assignee: HARNYSS IP, LLC
    Inventors: Henry U. Lee, Baoquan Huang, Benjamin S. Chao, Kirby Alan Smith
  • Publication number: 20230265546
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. The compartmentalization network includes a plurality of thermally conductive elongate tubes positioned within the pressure vessel forming a coherent, tightly packed tube bundle providing a thermally conductive network between the hydrogen storage alloy and the pressure vessel. The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 24, 2023
    Inventors: Benjamin S. Chao, Baoquan Huang, Henry U. Lee, Kirby Alan Smith
  • Patent number: 11661641
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. The compartmentalization network includes a plurality of thermally conductive elongate tubes positioned within the pressure vessel forming a coherent, tightly packed tube bundle providing a thermally conductive network between the hydrogen storage alloy and the pressure vessel. The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Grant
    Filed: July 21, 2022
    Date of Patent: May 30, 2023
    Assignee: HARNYSS IP, LLC
    Inventors: Benjamin S. Chao, Baoquan Huang, Henry U. Lee, Kirby Alan Smith
  • Publication number: 20230039589
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. The compartmentalization network includes a plurality of thermally conductive elongate tubes positioned within the pressure vessel forming a coherent, tightly packed tube bundle providing a thermally conductive network between the hydrogen storage alloy and the pressure vessel. The hydrogen storage alloy is a non-pyrophoric AB2-type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Application
    Filed: July 21, 2022
    Publication date: February 9, 2023
    Inventors: Benjamin S. Chao, Baoquan Huang, Henry U. Lee, Kirby Alan Smith
  • Publication number: 20230041451
    Abstract: A hydrogen storage system includes a hydrogen storage alloy containment vessel comprising an external pressure containment vessel and a thermally conductive compartmentalization network disposed within the pressure containment vessel. The compartmentalization network creates compartments within the pressure vessel within which a hydrogen storage alloy is disposed. One or both of the compartmentalization network and the pressure vessel may be formed by s 3D printing process, such as by Selective Laser Melting (SLM) and/or Direct Metal Laser Sintering (DMLS). The hydrogen storage alloy is a non-pyrophoric AB2— type Laves phase hydrogen storage alloy having: an A-site to B-site elemental ratio of not more than 0.5; and an alloy composition including (in at %): Zr: 2.0-5.5, Ti: 27-31.3, V: 8.3-9.9, Cr: 20.6-30.5, Mn: 25.4-33.0, Fe: 1.0-5.9, Al: 0.1-0.4, and/or Ni: 0.0-4.0.
    Type: Application
    Filed: July 21, 2022
    Publication date: February 9, 2023
    Inventors: Henry U. Lee, Baoquan Huang, Benjamin S. Chao, Kirby Alan Smith