Patents by Inventor Kiril FEDOROV

Kiril FEDOROV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12222325
    Abstract: The system is for use with a tissue sample and includes a tray and an apparatus. The tray is for receiving the tissue sample in use and an apparatus. The apparatus includes: a support which receives the tray in use: a probe adapted to transmit waves and identify wave echoes: a tissue marking device; and a transporter adapted to: convey the probe over the tissue sample in use, the probe and the transporter being adapted such that, in use, information about the tissue sample is collected sufficient to permit a radiologist to identify structures which resemble lymph nodes in the tissue sample; and convey the tissue marking device to locations of interest which correspond to the locations of structures which resemble lymph nodes in the tissue sample.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: February 11, 2025
    Assignee: The University of Westem Ontario
    Inventors: Michael Lavdas, Saumik Biswas, Elizabeth Pasman, Sherif Abdou, Gordon Ngo, Kirill Fedorov, Sejla Abdic, Matthew Cecchini
  • Publication number: 20240319144
    Abstract: The system is for use with a tissue sample and includes a tray and an apparatus. The tray is for receiving the tissue sample in use and an apparatus. The apparatus includes: a support which receives the tray in use: a probe adapted to transmit waves and identify wave echoes: a tissue marking device; and a transporter adapted to: convey the probe over the tissue sample in use, the probe and the transporter being adapted such that, in use, information about the tissue sample is collected sufficient to permit a radiologist to identify structures which resemble lymph nodes in the tissue sample; and convey the tissue marking device to locations of interest which correspond to the locations of structures which resemble lymph nodes in the tissue sample.
    Type: Application
    Filed: July 13, 2022
    Publication date: September 26, 2024
    Inventors: Michael LAVDAS, Saumik BISWAS, Elizabeth PASMAN, Sherif ABDOU, Gordon NGO, Kirill FEDOROV, Sejla ABDIC, Matthew CECCHINI
  • Patent number: 9078956
    Abstract: A surface-modified polymer is described, comprising a polymeric material and a self-assembling monolayer covalently bound thereto. The monolayer comprises monoethylene glycolated-OH (MEG-OH); 2-(3-trichlorosilyl-propyloxy)-ethyl-trifluoroacetate (7-OEG or MEG-TFA); 2,2,2-trifluoroethyl-13-trichlorosilyl-tridecanoate (TTTA); OEGylated TTTA (OEG-TTTA); S-(2-(2-(2-(3-trichlorosilyl-propyloxy)-ethoxy)-ethoxy)-ethyl)-benzenethiosulfonate (OEG-TUBTS); or a combination thereof. Methods are described for forming a surface-modified polymer by surface activation, such as with plasma. By utilizing the surface-modified polymer to make medical equipment or devices for contacting biological fluids, a reduction in surface fouling and thrombus formation can result. Advantageously, polymeric equipment or components so modified may have a reduction in unwanted chemical interactions leading to fouling or clotting.
    Type: Grant
    Filed: July 4, 2013
    Date of Patent: July 14, 2015
    Assignee: Econous Systems Inc.
    Inventors: Michael Thompson, Sonia Sheikh, Jack Chih-Chieh Sheng, Christophe Blaszykowski, Kiril Fedorov
  • Publication number: 20140018463
    Abstract: A surface-modified polymer is described, comprising a polymeric material and a self-assembling monolayer covalently bound thereto. The monolayer comprises monoethylene glycolated-OH (MEG-OH); 2-(3-trichlorosilyl-propyloxy)-ethyl-trifluoroacetate (7-OEG or MEG-TFA); 2,2,2-trifluoroethyl-13-trichlorosilyl-tridecanoate (TTTA); OEGylated TTTA (OEG-TTTA); S-(2-(2-(2-(3-trichlorosilyl-propyloxy)-ethoxy)-ethoxy)-ethyl)-benzenethiosulfonate (OEG-TUBTS); or a combination thereof. Methods are described for forming a surface-modified polymer by surface activation, such as with plasma. By utilizing the surface-modified polymer to make medical equipment or devices for contacting biological fluids, a reduction in surface fouling and thrombus formation can result. Advantageously, polymeric equipment or components so modified may have a reduction in unwanted chemical interactions leading to fouling or clotting.
    Type: Application
    Filed: July 4, 2013
    Publication date: January 16, 2014
    Applicant: ECONOUS SYSTEMS INC.
    Inventors: Michael THOMPSON, Sonia SHEIKH, Jack Chih-Chieh SHENG, Christophe BLASZYKOWSKI, Kiril FEDOROV