Patents by Inventor Kiril Ianakiev

Kiril Ianakiev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10422896
    Abstract: Improved, high count rate thermal neutron counters and electronics enabling new, higher measurement capabilities are disclosed. Next generation 3He and 10B tubes may include an electronics package capable of operating at higher count rates and in higher gamma fields and providing more efficient use of 3He gas. Conventional detector systems may also be upgraded, providing a possible solution to measure spent nuclear fuel with high neutron efficiency previously not possible in 235U fission counter systems. Switching the number of tubes per amplifier allows use of the measured nuclear material for a calibration standard for dead time correction, increasing accuracy of neutron measurements systems. An optimized detector geometry and advanced electronics with double pulse filtering and a dual channel readout may be provided. A bipolar shaper may improve dead time, provide efficient detector use, reduce double pulsing, facilitate high count rate measurements, and allow remote threshold setting.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: September 24, 2019
    Assignee: Triad National Security, LLC
    Inventors: Kiril Ianakiev, Metodi Iliev, Martyn Swinhoe, Michael Browne, Adrienne LaFleur
  • Publication number: 20060138340
    Abstract: A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.
    Type: Application
    Filed: September 30, 2003
    Publication date: June 29, 2006
    Inventors: Kiril Ianakiev, Martyn Swinhoe, John Lestone
  • Publication number: 20050269513
    Abstract: The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.
    Type: Application
    Filed: June 2, 2004
    Publication date: December 8, 2005
    Inventors: Kiril Ianakiev, Sin Hsue, Michael Browne, Jeffrey Audia