Patents by Inventor Kirk D. Prall

Kirk D. Prall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190212919
    Abstract: Methods, systems, and devices for a hybrid memory device are described. The hybrid memory device may include volatile and non-volatile memory cells on a single substrate, or die. The non-volatile memory cells may have ferroelectric capacitors and the volatile memory cells may have paraelectric or linear dielectric capacitors for their respective logic storage components. In some examples, the volatile memory cells may be used as a cache for the non-volatile memory cells. Or the non-volatile memory cells may be used as a back-up for the volatile memory cells. By placing both types of cells on a single die, rather than separate dies, various performance metrics may be improved, including those related to power consumption and operation speed.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Inventors: Kevin J. Ryan, Kirk D. Prall, Durai Vishak Nirmal Ramaswamy, Robert Quinn
  • Publication number: 20190189626
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Applicant: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Patent number: 10282108
    Abstract: The hybrid memory device may include volatile and non-volatile memory cells on a single substrate, or die. The non-volatile memory cells may have ferroelectric capacitors and the volatile memory cells may have paraelectric or linear dielectric capacitors for their respective logic storage components. In some examples, the volatile memory cells may be used as a cache for the non-volatile memory cells. Or the non-volatile memory cells may be used as a back-up for the volatile memory cells. By placing both types of cells on a single die, rather than separate dies, various performance metrics may be improved, including those related to power consumption and operation speed.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 7, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kevin J. Ryan, Kirk D. Prall, Durai Vishak Nirmal Ramaswamy, Robert Quinn
  • Patent number: 10217753
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: February 26, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Publication number: 20180358472
    Abstract: A ferroelectric field effect transistor comprises a semiconductive channel comprising opposing sidewalls and an elevationally outermost top. A source/drain region is at opposite ends of the channel. A gate construction of the transistor comprises inner dielectric extending along the channel top and laterally along the channel sidewalk. Inner conductive material is elevationally and laterally outward of the inner dielectric and extends along the channel top and laterally along the channel sidewalk. Outer ferroelectric material is elevationally outward of the inner conductive material and extends along the channel top. Outer conductive material is elevationally outward of the outer ferroelectric material and extends along the channel. Other constructions and methods are disclosed.
    Type: Application
    Filed: August 21, 2018
    Publication date: December 13, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Durai Vishak Nirmal Ramaswamy, Kirk D. Prall
  • Patent number: 10084084
    Abstract: A ferroelectric field effect transistor comprises a semiconductive channel comprising opposing sidewalls and an elevationally outermost top. A source/drain region is at opposite ends of the channel. A gate construction of the transistor comprises inner dielectric extending along the channel top and laterally along the channel sidewalls. Inner conductive material is elevationally and laterally outward of the inner dielectric and extends along the channel top and laterally along the channel sidewalls. Outer ferroelectric material is elevationally outward of the inner conductive material and extends along the channel top. Outer conductive material is elevationally outward of the outer ferroelectric material and extends along the channel. Other constructions and methods are disclosed.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: September 25, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Durai Vishak Nirmal Ramaswamy, Kirk D. Prall
  • Publication number: 20180145084
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 24, 2018
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita Chavan
  • Publication number: 20180122917
    Abstract: Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Durai Vishak Ramaswamy, Kirk D. Prall, Wayne Kinney
  • Publication number: 20180059958
    Abstract: Methods, systems, and devices for a hybrid memory device are described. The hybrid memory device may include volatile and non-volatile memory cells on a single substrate, or die. The non-volatile memory cells may have ferroelectric capacitors and the volatile memory cells may have paraelectric or linear dielectric capacitors for their respective logic storage components. In some examples, the volatile memory cells may be used as a cache for the non-volatile memory cells. Or the non-volatile memory cells may be used as a back-up for the volatile memory cells. By placing both types of cells on a single die, rather than separate dies, various performance metrics may be improved, including those related to power consumption and operation speed.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 1, 2018
    Inventors: Kevin J. Ryan, Kirk D. Prall, Durai Vishak Nirmal Ramaswamy, Robert Quinn
  • Patent number: 9887204
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: February 6, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita A. Chavan
  • Patent number: 9882016
    Abstract: Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: January 30, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Durai Vishak Ramaswamy, Kirk D. Prall, Wayne Kinney
  • Publication number: 20170373198
    Abstract: A ferroelectric field effect transistor comprises a semiconductive channel comprising opposing sidewalls and an elevationally outermost top. A source/drain region is at opposite ends of the channel. A gate construction of the transistor comprises inner dielectric extending along the channel top and laterally along the channel sidewalls. Inner conductive material is elevationally and laterally outward of the inner dielectric and extends along the channel top and laterally along the channel sidewalls. Outer ferroelectric material is elevationally outward of the inner conductive material and extends along the channel top. Outer conductive material is elevationally outward of the outer ferroelectric material and extends along the channel. Other constructions and methods are disclosed.
    Type: Application
    Filed: August 15, 2017
    Publication date: December 28, 2017
    Inventors: Durai Vishak Nirmal Ramaswamy, Kirk D. Prall
  • Publication number: 20170278568
    Abstract: The apparatuses and methods described herein may operate to measure a voltage difference between a selected access line and a selected sense line associated with a selected cell of a plurality of memory cells of a memory array. The voltage difference may be compared with a reference voltage specified for a memory operation. A selection voltage(s) applied to the selected cell for the memory operation may be adjusted responsive to the comparison, such as to dynamically compensate for parasitic voltage drop.
    Type: Application
    Filed: June 12, 2017
    Publication date: September 28, 2017
    Inventors: Zengtao T. Liu, Kirk D. Prall
  • Patent number: 9761715
    Abstract: A ferroelectric field effect transistor comprises a semiconductive channel comprising opposing sidewalls and an elevationally outermost top. A source/drain region is at opposite ends of the channel. A gate construction of the transistor comprises inner dielectric extending along the channel top and laterally along the channel sidewalls. Inner conductive material is elevationally and laterally outward of the inner dielectric and extends along the channel top and laterally along the channel sidewalls. Outer ferroelectric material is elevationally outward of the inner conductive material and extends along the channel top. Outer conductive material is elevationally outward of the outer ferroelectric material and extends along the channel. Other constructions and methods are disclosed.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: September 12, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Durai Vishak Nirmal Ramaswamy, Kirk D. Prall
  • Publication number: 20170236828
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Application
    Filed: May 2, 2017
    Publication date: August 17, 2017
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita A. Chavan
  • Patent number: 9679642
    Abstract: The apparatuses and methods described herein may operate to measure a voltage difference between a selected access line and a selected sense line associated with a selected cell of a plurality of memory cells of a memory array. The voltage difference may be compared with a reference voltage specified for a memory operation. A selection voltage(s) applied to the selected cell for the memory operation may be adjusted responsive to the comparison, such as to dynamically compensate for parasitic voltage drop.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: June 13, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Zengtao T. Liu, Kirk D. Prall
  • Patent number: 9673203
    Abstract: A memory cell includes a select device and a capacitor electrically coupled in series with the select device. The capacitor includes two conductive capacitor electrodes having ferroelectric material there-between. The capacitor has an intrinsic current leakage path from one of the capacitor electrodes to the other through the ferroelectric material. There is a parallel current leakage path from the one capacitor electrode to the other. The parallel current leakage path is circuit-parallel the intrinsic path and of lower total resistance than the intrinsic path. Other aspects are disclosed.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 6, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Qian Tao, Durai Vishak Nirmal Ramaswamy, Haitao Liu, Kirk D. Prall, Ashonita A. Chavan
  • Publication number: 20170133478
    Abstract: Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate.
    Type: Application
    Filed: January 20, 2017
    Publication date: May 11, 2017
    Inventors: Durai Vishak Ramaswamy, Kirk D. Prall, Wayne Kinney
  • Patent number: 9590066
    Abstract: Some embodiments include a semiconductor construction having a gate extending into a semiconductor base. Conductively-doped source and drain regions are within the base adjacent the gate. A gate dielectric has a first segment between the source region and the gate, a second segment between the drain region and the gate, and a third segment between the first and second segments. At least a portion of the gate dielectric comprises ferroelectric material. In some embodiments the ferroelectric material is within each of the first, second and third segments. In some embodiments, the ferroelectric material is within the first segment or the third segment. In some embodiments, a transistor has a gate, a source region and a drain region; and has a channel region between the source and drain regions. The transistor has a gate dielectric which contains ferroelectric material between the source region and the gate.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: March 7, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Durai Vishak Ramaswamy, Kirk D. Prall, Wayne Kinney
  • Patent number: 9548335
    Abstract: The present disclosure includes methods and apparatuses that include resistive memory. A number of embodiments include a first memory cell coupled to a data line and including a first resistive storage element and a first access device, a second memory cell coupled to the data line and including a second resistive storage element and a second access device, an isolation device formed between the first access device and the second access device, a first select line coupled to the first resistive storage element, and a second select line coupled to the second resistive storage element, wherein the second select line is separate from the first select line.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: January 17, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Zengtao T. Liu, Kirk D. Prall, Mike Violette