Patents by Inventor Kirk Davis

Kirk Davis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190304595
    Abstract: Methods, apparatus, systems, and articles of manufacture are disclosed herein for healthcare processor optimization and management. An example apparatus includes a score prediction engine to determine a score for a previous resource composition, and predict, using machine learning techniques, resource composition scores for resource compositions different from the previous resource composition, and an output generator to generate results based on the resource composition scores, select a result from the results for interactive display, the selection based upon the resource composition scores, output the result for interaction via an interface, the interface receiving an input to accept the result/modify the result, and, in response to receiving the input, propagate the accepted result and/or the modified result to a server to, configure a first portion of the server with the result, reconfigure the first portion of the server with the result, and/or configure a second portion of the server with the result.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Inventors: Ophira Bergman, Kirk Davis, Brian Shannon
  • Publication number: 20130245484
    Abstract: Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: Pulmonx Corporation
    Inventors: Nikolai Aljuri, Anthony Wondka, George Surjan, Kirk Davis, Peter Soltesz, Rodney C. Perkins
  • Patent number: 8454527
    Abstract: Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: June 4, 2013
    Assignee: Pulmonx Corporation
    Inventors: Nikolai Aljuri, Anthony Wondka, George Surjan, Kirk Davis, Peter Soltesz, Rodney C. Perkins
  • Publication number: 20110087122
    Abstract: Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: Pulmonx Corporation
    Inventors: Nikolai Aljuri, Anthony Wondka, George Surjan, Kirk Davis, Peter Soltesz, Rodney C. Perkins
  • Patent number: 7883471
    Abstract: Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: February 8, 2011
    Assignee: Pulmonx Corporation
    Inventors: Nikolai Aljuri, Anthony Wondka, George Surjan, Kirk Davis, Peter Soltesz, Rodney C. Perkins
  • Publication number: 20100318088
    Abstract: Methods and devices for deploying biological implants are disclosed. The biological implants can include orthopedic, multi-component ankle implants. The target site can be prepared by fixing a rigid, alignable guide or jig with saw holes to the bone(s). Saws configured to fit through the saw holes can then be inserted through the saw holes to cut the bone(s). The jig can then be removed. Slidable implants can be positioned. Implants needing to be forced into place can be attached to elongated members to gently hold the implant and to provide a non-implant surface on which to apply the force.
    Type: Application
    Filed: January 20, 2010
    Publication date: December 16, 2010
    Applicant: Talus Medical, Inc.
    Inventors: James Brian Warne, Kirk Davis, Craig J. Corey, Roderick James Pimlott, George Yoseung Choi
  • Publication number: 20080154991
    Abstract: Embodiments and implementations of non-volatile storage system monitoring of a file system are described herein.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Inventors: Kirk Davis, Dipak Patel, Pramod R. Pesara, Daniel Post, Kris R. Murray, Richard J. Durante, Steve Wells, Jack Chen, Meenakshi Pannala
  • Publication number: 20080067123
    Abstract: A process for functionalizing a carbon surface and the product thereof is disclosed. The first reactant used contains one or more electron withdrawing groups that thereafter can be reacted with other compounds. The reaction product has enhanced dispersability, interaction with other media, or other utilitarian uses, e.g. a reactive surface. The reaction product is then incorporated into an elastomeric or thermoplastic composition; it can be dispersed in a liquid media such as an ink, coating, or lubricant; or it can be used as a solid in applications such as a filtering media.
    Type: Application
    Filed: November 21, 2007
    Publication date: March 20, 2008
    Inventors: James Burrington, Kirk Davis, Scott Jolley, Ralph Kornbrekke, Joseph Pialet, Philip Pike, Roger Sowerby
  • Publication number: 20060264772
    Abstract: Minimally invasive methods, systems and devices are provided for qualitatively and quantitatively assessing collateral ventilation in the lungs. In particular, collateral ventilation of a target compartment within a lung of a patient is assessed by advancement of a catheter through the tracheobronchial tree to a feeding bronchus of the target compartment. The feeding bronchus is occluded by the catheter and a variety of measurements are taken with the use of the catheter in a manner which is of low risk to the patient. Examples of such measurements include but are not limited to flow rate, volume and pressure. These measurements are used to determine the presence of collateral ventilation and to quantify such collateral ventilation.
    Type: Application
    Filed: December 7, 2005
    Publication date: November 23, 2006
    Applicant: PULMONX
    Inventors: Nikolai Aljuri, Anthony Wondka, George Surjan, Kirk Davis, Peter Soltesz, Rodney Perkins