Patents by Inventor Kirk Hargreaves

Kirk Hargreaves has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080048680
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: October 30, 2007
    Publication date: February 28, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Kirk HARGREAVES, Joseph REYNOLDS, David ELY, Julian HAINES
  • Publication number: 20080048679
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: October 30, 2007
    Publication date: February 28, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Kirk HARGREAVES, Joseph REYNOLDS, David ELY, Julian HAINES
  • Publication number: 20080042660
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Application
    Filed: October 26, 2007
    Publication date: February 21, 2008
    Applicant: SYNAPTICS INCORPORATED
    Inventors: David ELY, Paul ROUTLEY, Joseph REYNOLDS, Julian HAINES, Kirk HARGREAVES
  • Publication number: 20080040079
    Abstract: Methods, systems and devices are described for detecting noise in a touchpad or other sensor that produces an output in response to a stimulus that is applied at or near a sensing region. According to various embodiments, a carrier signal is applied to the sensing region at two or more frequencies to thereby produce an output from the sensing region at each frequency. Each of the outputs is demodulated and filtered by a demodulation filter having a demodulation filter bandwidth. The various frequencies applied to the carrier signal are selected such that a difference between the frequencies is less than the demodulation filter bandwidth. At least some of the effects of the stimulus are removed from the outputs produced by the various carrier frequencies to produce two or more filtered outputs. The filtered outputs are then added, combined or otherwise processed to detect noise contained therein.
    Type: Application
    Filed: March 22, 2006
    Publication date: February 14, 2008
    Inventor: Kirk Hargreaves
  • Patent number: 7301350
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: June 3, 2006
    Date of Patent: November 27, 2007
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Patent number: 7288946
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: October 30, 2007
    Assignee: Synaptics Incorporated
    Inventors: Kirk Hargreaves, Joseph Kurth Reynolds, David Ely, Julian Haines
  • Publication number: 20070176609
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using charge transfer techniques. According to various embodiments, a charge transfer process is performed for two or more times. During the charge transfer process, a pre-determined voltage is applied to the measurable capacitance, and the measurable capacitance is then allowed to share charge with a filter capacitance through a passive impedance that remains coupled to both the measurable capacitance and to the filter capacitance throughout the charge transfer process. The value of the measurable capacitance can then be determined as a function of a representation of a charge on the filter capacitance and the number of times that the charge transfer process was performed. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to an input sensor.
    Type: Application
    Filed: June 3, 2006
    Publication date: August 2, 2007
    Inventors: David Ely, Paul Routley, Joseph Reynolds, Julian Haines, Kirk Hargreaves
  • Publication number: 20070159184
    Abstract: Methods and apparatus are provided for measuring a ratio of capacitances.
    Type: Application
    Filed: December 22, 2006
    Publication date: July 12, 2007
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Joseph REYNOLDS, Kirk HARGREAVES
  • Publication number: 20070075710
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: November 30, 2006
    Publication date: April 5, 2007
    Inventors: Kirk Hargreaves, Joseph Reynolds, David Ely, Julian Haines
  • Publication number: 20070046299
    Abstract: Methods, systems and devices are described for detecting a measurable capacitance using sigma-delta measurement techniques. According to various embodiments, a voltage is applied to the measurable capacitance using a first switch. The measurable capacitance is allowed to share charge with a passive network. If the charge on the passive network is past a threshold value, then the charge on the passive network is changed by a known amount for a sufficient number of repetitions until the measurable capacitance can be detected. Such a detection scheme may be readily implemented using conventional components, and can be particularly useful in sensing the position of a finger, stylus or other object with respect to a button, slider, touchpad or other input sensor.
    Type: Application
    Filed: June 3, 2006
    Publication date: March 1, 2007
    Inventors: Kirk Hargreaves, Joseph Reynolds, David Ely, Julian Haines
  • Patent number: 7031886
    Abstract: Methods, systems and devices are described for detecting noise in a touchpad or other sensor that produces an output in response to a stimulus that is applied at or near a sensing region. According to various embodiments, a carrier signal is applied to the sensing region at two or more frequencies to thereby produce an output from the sensing region at each frequency. Each of the outputs is demodulated and filtered by a demodulation filter having a demodulation filter bandwidth. The various frequencies applied to the carrier signal are selected such that a difference between the frequencies is less than the demodulation filter bandwidth. At least some of the effects of the stimulus are removed from the outputs produced by the various carrier frequencies to produce two or more filtered outputs. The filtered outputs are then added, combined or otherwise processed to detect noise contained therein.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: April 18, 2006
    Assignee: Synaptics Incorporated
    Inventor: Kirk Hargreaves