Patents by Inventor Kirk Miller

Kirk Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11644081
    Abstract: A vibration isolator, system, and method for minimizing propagation of vibrations between structures are configured to decouple axial and lateral structural modes. The vibration isolator includes an axial flexural support that provides axial compliance relative to a central axis and a lateral elastomeric support that provides lateral compliance relative to the central axis. The axial flexural support and the lateral elastomeric support provide stiffness about the central axis. The vibration isolator includes a first mount coupled to a first external structure and a second mount coupled to a second external structure. The axial flexural support is coupled to the first mount and the lateral elastomeric support is coupled to the second mount and the axial flexural support. Using an axial flexural support and a lateral elastomeric support enables tuning of the structural modes in one axis while minimizing the effects to the structural modes in the orthogonal axes.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: May 9, 2023
    Assignee: Raytheon Company
    Inventors: Emmanuel Fierro, Eric E-Lee Chang, Kirk A. Miller
  • Patent number: 11579403
    Abstract: A bipod flexure mount couples an optic to a base while isolating the optic from strain to resist wavefront error. The bipod flexure mount has a distal attachment pad to be coupled to the optic and a proximal attachment pad to be coupled to the base. A pair of beams extend between and couple the distal and proximal attachment pads. The distal attachment pad, the proximal attachment pad and the pair of beams are disposed in and define a planar layer with opposite planar surfaces that are substantially parallel. The bipod flexure mount is relatively flexible about four degrees of freedom and is relatively stiff about two degrees of freedom.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: February 14, 2023
    Assignee: Raytheon Company
    Inventor: Kirk A. Miller
  • Patent number: 11554725
    Abstract: A crossbar assembly for facilitating isolation of a sensor assembly from vibration comprises an outer crossbar segment, an inner crossbar segment, and an isolator. The outer crossbar segment comprises a payload mount interface and an outer isolator interface operable to mount to an isolator. The inner crossbar segment comprises a structure interface and an inner isolator interface operable to mount to the isolator. The isolator can be supported by the outer and inner crossbar segments. The isolator comprises a first wire rope assembly comprising wire ropes extending longitudinally from the outer crossbar segment to the inner crossbar segment, and a second wire rope assembly comprising a wire rope extending circumferentially between the outer and inner crossbar segments. The isolator operates to partially decouple the outer crossbar segment from the inner crossbar segment and dampen vibrations propagating between the outer and inner crossbar segments.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: January 17, 2023
    Assignee: Raytheon Company
    Inventor: Kirk A. Miller
  • Patent number: 11524636
    Abstract: A crossbar system for facilitating isolation of a sensor assembly from external vibrations of a support structure. The crossbar system comprises first and second crossbar assemblies and a payload mount, Each of the first and second crossbar assemblies comprises a crossbar segment and a slip plate damper. Each crossbar segment comprises a payload mount interface at a first end of the crossbar assembly and a first support structure interface at a second end of the crossbar assembly. Each slip plate damper is disposed about the crossbar segment and is slidably coupled to the crossbar segment to constrain movement in two lateral degrees of freedom and to facilitate movement in a longitudinal degree of freedom, Each slip plate damper comprises a second support structure interface at the second end of the crossbar assembly. The payload mount is coupled to the payload mount interfaces of the first and second crossbar assemblies.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: December 13, 2022
    Assignee: Raytheon Company
    Inventors: Kirk A. Miller, Sean G. Thomas
  • Patent number: 11448287
    Abstract: A crossbar assembly for facilitating isolation of a sensor assembly from vibration of a payload mounting system on a vehicle comprises an outer crossbar segment, an inner crossbar segment, and an isolator. The outer crossbar segment comprises a payload mount interface operable to mount to a payload mount, and an outer isolator interface operable to mount to an isolator. The inner crossbar segment comprises a structure interface to mount to a structure, and an inner isolator interface operable to mount to the isolator. The isolator can be supported by the outer and inner crossbar segments. The isolator comprises an elastomeric component operable to elastically deform in response to relative movement between the outer and inner crossbar segments. The isolator operates to partially decouple the outer crossbar segment from the inner crossbar segment and dampen vibrations propagating between the outer and inner crossbar segments.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 20, 2022
    Assignee: Raytheon Company
    Inventors: Kirk A. Miller, Sean G. Thomas
  • Publication number: 20220235845
    Abstract: A vibration isolator, system, and method for minimizing propagation of vibrations between structures are configured to decouple axial and lateral structural modes. The vibration isolator includes an axial flexural support that provides axial compliance relative to a central axis and a lateral elastomeric support that provides lateral compliance relative to the central axis. The axial flexural support and the lateral elastomeric support provide stiffness about the central axis. The vibration isolator includes a first mount coupled to a first external structure and a second mount coupled to a second external structure. The axial flexural support is coupled to the first mount and the lateral elastomeric support is coupled to the second mount and the axial flexural support. Using an axial flexural support and a lateral elastomeric support enables tuning of the structural modes in one axis while minimizing the effects to the structural modes in the orthogonal axes.
    Type: Application
    Filed: November 11, 2021
    Publication date: July 28, 2022
    Inventors: Emmanuel Fierro, Eric E-Lee Chang, Kirk A. Miller
  • Publication number: 20220146786
    Abstract: A bipod flexure mount couples an optic to a base while isolating the optic from strain to resist wavefront error. The bipod flexure mount has a distal attachment pad to be coupled to the optic and a proximal attachment pad to be coupled to the base. A pair of beams extend between and couple the distal and proximal attachment pads. The distal attachment pad, the proximal attachment pad and the pair of beams are disposed in and define a planar layer with opposite planar surfaces that are substantially parallel. The bipod flexure mount is relatively flexible about four degrees of freedom and is relatively stiff about two degrees of freedom.
    Type: Application
    Filed: November 30, 2021
    Publication date: May 12, 2022
    Inventor: Kirk A. Miller
  • Patent number: 11243082
    Abstract: A cardan joint includes a cross-elevation assembly comprising a cross-elevation housing, a roll-elevation assembly comprising a roll-elevation housing, a payload interface assembly comprising a payload interface housing, and a suspension interface yoke comprising a suspension interface that couples the suspension interface yoke to one or more suspension bars. The roll-elevation assembly is rotatably connected to the cross-elevation assembly along a first rotation axis via a radial roller bearing and a thrust roller bearing. The payload interface assembly is rotatably connected to the roll-elevation assembly along a second rotation axis via a radial roller bearing and a thrust roller bearing. The suspension interface yoke is rotatably connected to the cross-elevation assembly along a third rotation axis via one or more radial roller bearings and one or more thrust roller bearings.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: February 8, 2022
    Assignee: Raytheon Company
    Inventors: Kirk A. Miller, Jason R. Lavine
  • Patent number: 11187871
    Abstract: A bipod flexure mount couples an optic to a base while isolating the optic from strain to resist wavefront error. The bipod flexure mount has a distal attachment pad to be coupled to the optic and a proximal attachment pad to be coupled to the base. A pair of beams extend between and couple the distal and proximal attachment pads. The distal attachment pad, the proximal attachment pad and the pair of beams are disposed in and define a planar layer with opposite planar surfaces that are substantially parallel. The bipod flexure mount is relatively flexible about four degrees of freedom and is relatively stiff about two degrees of freedom.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 30, 2021
    Assignee: Raytheon Company
    Inventor: Kirk A. Miller
  • Patent number: 11150025
    Abstract: An apparatus includes a heat exchanger configured to be positioned around and coupled to a multi-axis gimbal. The heat exchanger includes an inlet configured to receive fluid containing heat generated by an equipment package carried by the gimbal. The heat exchanger also includes multiple heat rejection interfaces configured to reject the heat from the fluid into surrounding air in order to cool the fluid. The heat exchanger further includes an outlet configured to provide the cooled fluid from the heat exchanger. The heat rejection interfaces of the heat exchanger extend around the heat exchanger and are configured to reject the heat from the fluid regardless of a direction in which the gimbal is pointing the equipment package.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 19, 2021
    Assignee: Raytheon Company
    Inventors: Kirk A. Miller, Gary J. Schwartz, Aaron M. Dossman, Mark A. Michnevitz
  • Patent number: 11099371
    Abstract: An optical system (e.g., a telescope) comprising an optical assembly that reflects and refracts light rays through a single window about an optical path to a detector. A field-of-view bypass assembly comprises a bypass mirror movably coupled with respect to the optical assembly. The bypass mirror is selectively translatable and tiltable between a bypass configuration and a retracted configuration. In the bypass configuration, the bypass mirror is disposed in and interrupts the primary optical path and oriented to define a secondary optical path to the detector. In the retracted configuration, the bypass mirror is both disposed out of the primary optical path and is properly shielded to prevent stray light reflections.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 24, 2021
    Assignee: Raytheon Company
    Inventors: Kirk A. Miller, Andrew Short
  • Publication number: 20210188187
    Abstract: A crossbar assembly for facilitating isolation of a sensor assembly from vibration comprises an outer crossbar segment, an inner crossbar segment, and an isolator. The outer crossbar segment comprises a payload mount interface and an outer isolator interface operable to mount to an isolator. The inner crossbar segment comprises a structure interface and an inner isolator interface operable to mount to the isolator. The isolator can be supported by the outer and inner crossbar segments. The isolator comprises a first wire rope assembly comprising wire ropes extending longitudinally from the outer crossbar segment to the inner crossbar segment, and a second wire rope assembly comprising a wire rope extending circumferentially between the outer and inner crossbar segments. The isolator operates to partially decouple the outer crossbar segment from the inner crossbar segment and dampen vibrations propagating between the outer and inner crossbar segments.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventor: Kirk A. Miller
  • Publication number: 20210190171
    Abstract: A crossbar system for facilitating isolation of a sensor assembly from external vibrations of a support structure. The crossbar system comprises first and second crossbar assemblies and a payload mount, Each of the first and second crossbar assemblies comprises a crossbar segment and a slip plate damper. Each crossbar segment comprises a payload mount interface at a first end of the crossbar assembly and a first support structure interface at a second end of the crossbar assembly. Each slip plate damper is disposed about the crossbar segment and is slidably coupled to the crossbar segment to constrain movement in two lateral degrees of freedom and to facilitate movement in a longitudinal degree of freedom, Each slip plate damper comprises a second support structure interface at the second end of the crossbar assembly. The payload mount is coupled to the payload mount interfaces of the first and second crossbar assemblies.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: Kirk A. Miller, Sean G. Thomas
  • Publication number: 20210190170
    Abstract: A crossbar assembly for facilitating isolation of a sensor assembly from vibration of a payload mounting system on a vehicle comprises an outer crossbar segment, an inner crossbar segment, and an isolator. The outer crossbar segment comprises a payload mount interface operable to mount to a payload mount, and an outer isolator interface operable to mount to an isolator. The inner crossbar segment comprises a structure interface to mount to a structure, and an inner isolator interface operable to mount to the isolator. The isolator can be supported by the outer and inner crossbar segments. The isolator comprises an elastomeric component operable to elastically deform in response to relative movement between the outer and inner crossbar segments. The isolator operates to partially decouple the outer crossbar segment from the inner crossbar segment and dampen vibrations propagating between the outer and inner crossbar segments.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: Kirk A. Miller, Sean G. Thomas
  • Publication number: 20210190500
    Abstract: A cardan joint includes a cross-elevation assembly comprising a cross-elevation housing, a roll-elevation assembly comprising a roll-elevation housing, a payload interface assembly comprising a payload interface housing, and a suspension interface yoke comprising a suspension interface that couples the suspension interface yoke to one or more suspension bars. The roll-elevation assembly is rotatably connected to the cross-elevation assembly along a first rotation axis via a radial roller bearing and a thrust roller bearing. The payload interface assembly is rotatably connected to the roll-elevation assembly along a second rotation axis via a radial roller bearing and a thrust roller bearing. The suspension interface yoke is rotatably connected to the cross-elevation assembly along a third rotation axis via one or more radial roller bearings and one or more thrust roller bearings.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Inventors: Kirk A. Miller, Jason R. Lavine
  • Publication number: 20210164545
    Abstract: A relative translation assembly operable with a drive mechanism. The relative translation assembly can have a fixed support member, a translatable member supported by the fixed support member, and a translation guide portion to facilitate translation of the translatable member relative to the fixed support member. The translation guide portion can have a fixed translation member and a movable translation member. The movable translation member can be configured to maintain preload on the fixed and movable translation members and accommodate thermal expansion. The drive mechanism can be configured to cause translation of the translatable member relative to the fixed support member.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Jake B. Range, Kirk A. Miller, David B. Peck
  • Patent number: 10954966
    Abstract: An apparatus includes a bootstrap accumulator having multiple fluid expansion volumes each configured to receive fluid. The bootstrap accumulator also includes a piston assembly configured to move within the fluid expansion volumes based on pressures within the fluid expansion volumes. The piston assembly includes (i) a fluid pathway that couples the fluid expansion volumes and (ii) a bypass valve configured to selectively open or block the fluid pathway. The piston assembly could also include multiple pistons and a connecting rod coupling the pistons. The fluid pathway could include a narrower path through a first portion of the connecting rod and a wider path through a second portion of the connecting rod. The bypass valve could include a ball and a spring configured to push the ball to block the narrower path through the first portion of the connecting rod.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 23, 2021
    Assignee: Raytheon Company
    Inventor: Kirk A. Miller
  • Patent number: 10914364
    Abstract: A relative translation assembly operable with a drive mechanism. The relative translation assembly can have a fixed support member, a translatable member supported by the fixed support member, and a translation guide portion to facilitate translation of the translatable member relative to the fixed support member. The translation guide portion can have a fixed translation member and a movable translation member. The movable translation member can be configured to maintain preload on the fixed and movable translation members and accommodate thermal expansion. The drive mechanism can be configured to cause translation of the translatable member relative to the fixed support member.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: February 9, 2021
    Assignee: Raytheon Company
    Inventors: Jake B. Range, Kirk A. Miller, David B. Peck
  • Patent number: 10916993
    Abstract: A torque motor includes a large area rotor, a stator surrounding at least a portion of the rotor, and a small air gap separating the rotor from the stator to allow frictionless thermal coupling between the rotor and the stator. Heat from the rotor is transferred to the stator by conduction. The stator contacts an inner surface for a housing of the torque motor for conductively coupling to a cold environment air flow exterior to the torque motor housing. The air gap may have a dimension of about 0.002 to 0.003 inches. The stator may be conductively coupled to the torque motor housing by one of a thermal gap pad or high conductivity thermal gap filling compound. Heat conduction from the rotor to the stator preferably occurs without rotation of the rotor.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 9, 2021
    Assignee: Raytheon Company
    Inventors: Kirk A. Miller, Brian M. Graue, William T. Bogert
  • Patent number: 10816056
    Abstract: A vibration isolation device includes flexures and a multi-part mounting interface for coupling a frame that supports equipment to a structure. The flexures may include three pairs of flexures that allow movement in three orthogonal directions, to allow compliance and/or damp vibrations in the three directions. The flexures may surround the multi-part mounting interface, the parts of which are configured to move relative to one another. One of the parts of the mounting interfaces passes through another part of the mounting interface, such as in one or more holes in one of the interfaces. The device allows equipment mounted on the frame to be isolated from some or all of vibrations produced at the structure. In an example embodiment the vibration isolation system is used in mounting an optical sensor or device to an aircraft.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: October 27, 2020
    Assignee: Raytheon Company
    Inventors: Eric E-Lee Chang, Emmanuel Fierro, Kirk A. Miller, Richard L. Scott