Patents by Inventor Kirk W. Madison

Kirk W. Madison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240053452
    Abstract: A method and an apparatus for determining a signed Doppler frequency shift of an optical signal.
    Type: Application
    Filed: December 7, 2021
    Publication date: February 15, 2024
    Inventors: Kyzyl Herzog, William Bowden, Kirk W. Madison
  • Publication number: 20220334242
    Abstract: Apparatus for determining a range to one or more targets are provided. In various embodiments, the apparatus comprises a field transceiver module and a computing node in communication with each other. The field transceiver module is configured to generate an electromagnetic probe carrier field; under the control of the computing node, phase-modulate the carrier probe field according to a time-periodic probe modulation waveform having a probe modulation phase that includes a probe modulation frequency and a probe modulation phase offset, thereby generating a modulated probe field; direct the modulated probe field at one or more targets and to receive a modulated reflected probe field from one or more targets; demodulate the modulated reflected probe field and generate a probe signal corresponding to the probe modulation waveform.
    Type: Application
    Filed: June 9, 2022
    Publication date: October 20, 2022
    Inventors: Kirk W. Madison, Kyzyl Herzog
  • Patent number: 11391834
    Abstract: Apparatus for determining a range to one or more targets are provided. In various embodiments, the apparatus comprises a field transceiver module and a computing node in communication with each other. The field transceiver module is configured to generate an electromagnetic probe carrier field; under the control of the computing node, phase-modulate the carrier probe field according to a time-periodic probe modulation waveform having a probe modulation phase that includes a probe modulation frequency and a probe modulation phase offset, thereby generating a modulated probe field; direct the modulated probe field at one or more targets and to receive a modulated reflected probe field from one or more targets; demodulate the modulated reflected probe field and generate a probe signal corresponding to the probe modulation waveform.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: July 19, 2022
    Assignee: ILLUSENSE, INC.
    Inventors: Kirk W. Madison, Kyzyl Herzog
  • Patent number: 11221268
    Abstract: A method determines a total velocity average cross-section parameter ?tot? in a relationship of the form ?loss(U)=nb?tot?·ƒ(U, Ud), where: ?loss(U) is a rate of exponential loss of sensor atoms from a cold atom sensor trap of trap depth potential energy U in a vacuum environment due to collisions with residual particles in the vacuum environment; nb is a number density of residual particles in the vacuum environment; Ud is a parameter given by U d = 2 ? k B ? T / m bg ? 4 ? ? ? ? ? 2 m t ? ? ? tot ? v ? which relates the masses of the sensor atoms mt and residual particles mbg to the total velocity average cross-section parameter ?tot?; and ƒ(U, Ud) is a function of the trap depth potential energy U and the parameter Ud which models a naturally occurring dependence of the loss rate ?loss(U) on the trap depth potential energy U and the parameter Ud, where ƒ(U=0, Ud) is unity for all Ud.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: January 11, 2022
    Assignees: The University of British Coumbia, British Columbia Institute of Technology
    Inventors: Kirk W. Madison, James Lawrence Booth, Pinrui Shen, Roman V. Krems
  • Publication number: 20200025639
    Abstract: A method determines a total velocity average cross-section parameter ?tot? in a relationship of the form ?loss(U)=nb?tot?·ƒ(U, Ud), where: ?loss(U) is a rate of exponential loss of sensor atoms from a cold atom sensor trap of trap depth potential energy U in a vacuum environment due to collisions with residual particles in the vacuum environment; nb is a number density of residual particles in the vacuum environment; Ud is a parameter given by U d = 2 ? k B ? T / m bg ? 4 ? ? ? ? ? 2 m t ? ? ? tot ? v ? which relates the masses of the sensor atoms mt and residual particles mbg to the total velocity average cross-section parameter ?tot?; and ƒ(U, Ud) is a function of the trap depth potential energy U and the parameter Ud which models a naturally occurring dependence of the loss rate ?loss(U) on the trap depth potential energy U and the parameter Ud, where ƒ(U=0, Ud) is unity for all Ud.
    Type: Application
    Filed: July 23, 2019
    Publication date: January 23, 2020
    Inventors: Kirk W. MADISON, James Lawrence BOOTH, Pinrui SHEN, Roman V. KREMS
  • Publication number: 20190265351
    Abstract: Apparatus for determining a range to one or more targets are provided. In various embodiments, the apparatus comprises a field transceiver module and a computing node in communication with each other. The field transceiver module is configured to generate an electromagnetic probe carrier field; under the control of the computing node, phase-modulate the carrier probe field according to a time-periodic probe modulation waveform having a probe modulation phase that includes a probe modulation frequency and a probe modulation phase offset, thereby generating a modulated probe field; direct the modulated probe field at one or more targets and to receive a modulated reflected probe field from one or more targets; demodulate the modulated reflected probe field and generate a probe signal corresponding to the probe modulation waveform.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Inventors: Kirk W. Madison, Kyzyl Herzog