Patents by Inventor Kirsten Cicotte

Kirsten Cicotte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10058099
    Abstract: The invention provides methods and materials for decontamination of surfaces and fabrics, such as non-woven fabrics, that are contaminated with infestations of microorganisms such as bacteria. Biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group can be used to decontaminate infested surfaces in the presence of oxygen and, optionally, illumination. Fibers incorporating biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group, wherein the oligomer is physically associated with or covalently bonded to, or both, the fiber-forming polymer can be used to form non-woven mats. Biocidal non-woven mats prepared by methods of the invention, incorporating the biocidal oligomers, can be used to suppress bacterial growth in wound and surgical dressings and personal hygiene products.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 28, 2018
    Assignees: STC.UNM, University of Florida Research Foundation, Inc.
    Inventors: David G. Whitten, Kirk S. Schanze, Eunkyung Ji, Dimitri Dascier, Anand Parthasarathy, Thomas S. Corbitt, Kirsten Cicotte, Elizabeth LeBleu Dirk, Xuzhi Zhu
  • Patent number: 9816214
    Abstract: Methods and apparatus for forming non-woven fiber mats from polymers and monomers that are traditionally difficult to use for fiber formation are shown and described. Applicable techniques include electrospinning and other traditional fiber formation methods. Suitable polymers and monomers include those having low molecular weight, a low melting point, and/or a low glass transition temperature.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: November 14, 2017
    Assignee: STC.UNM
    Inventors: Elizabeth L Dirk, Shawn Dirk, Kirsten Cicotte
  • Publication number: 20170164614
    Abstract: The invention provides methods and materials for decontamination of surfaces and fabrics, such as non-woven fabrics, that are contaminated with infestations of microorganisms such as bacteria. Biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group can be used to decontaminate infested surfaces in the presence of oxygen and, optionally, illumination. Fibers incorporating biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group, wherein the oligomer is physically associated with or covalently bonded to, or both, the fiber-forming polymer can be used to form non-woven mats. Biocidal non-woven mats prepared by methods of the invention, incorporating the biocidal oligomers, can be used to suppress bacterial growth in wound and surgical dressings and personal hygiene products.
    Type: Application
    Filed: December 2, 2016
    Publication date: June 15, 2017
    Inventors: David G. Whitten, Kirk S. Schanze, Eunkyung Ji, Dimitri Dascier, Anand Parthasarathy, Thomas S. Corbitt, Kirsten Cicotte, Elizabeth LeBleu Dirk, Xuzhi Zhu
  • Patent number: 9549549
    Abstract: The invention provides methods and materials for decontamination of surfaces and fabrics, such as non-woven fabrics, that are contaminated with infestations of microorganisms such as bacteria. Biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group can be used to decontaminate infested surfaces in the presence of oxygen and, optionally, illumination. Fibers incorporating biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group, wherein the oligomer is physically associated with or covalently bonded to, or both, the fiber-forming polymer can be used to form non-woven mats. Biocidal non-woven mats prepared by methods of the invention, incorporating the biocidal oligomers, can be used to suppress bacterial growth in wound and surgical dressings and personal hygiene products.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: January 24, 2017
    Assignees: STC.UNM, University of Florida Research Foundation, Inc.
    Inventors: David G. Whitten, Kirk S. Schanze, Eunkyung Ji, Dimitri Dascier, Anand Parthasarathy, Thomas S. Corbitt, Kirsten Cicotte, Elizabeth LeBleu Dirk, Xuzhi Zhu
  • Publication number: 20160152766
    Abstract: A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 2, 2016
    Applicant: STC.UNM
    Inventors: Elizabeth L Dirk, Shawn Dirk, Kirsten Cicotte
  • Patent number: 9228042
    Abstract: A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: January 5, 2016
    Assignee: STC.UNM
    Inventors: Elizabeth L Hedberg-Dirk, Shawn Dirk, Kirsten Cicotte
  • Publication number: 20140319740
    Abstract: Methods and apparatus for forming non-woven fiber mats from polymers and monomers that are traditionally difficult to use for fiber formation are shown and described. Applicable techniques include electrospinning and other traditional fiber formation methods. Suitable polymers and monomers include those having low molecular weight, a low melting point, and/or a low glass transition temperature.
    Type: Application
    Filed: July 11, 2014
    Publication date: October 30, 2014
    Applicant: STC.UNM
    Inventors: Elizabeth L. Dirk, Shawn Dirk, Kirsten Cicotte
  • Publication number: 20140242148
    Abstract: The invention provides methods and materials for decontamination of surfaces and fabrics, such as non-woven fabrics, that are contaminated with infestations of microorganisms such as bacteria. Biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group can be used to decontaminate infested surfaces in the presence of oxygen and, optionally, illumination. Fibers incorporating biocidal oligomers having conjugated oligo-(aryl/heteroaryl ethynyl) structures and comprising at least one cationic group, wherein the oligomer is physically associated with or covalently bonded to, or both, the fiber-forming polymer can be used to form non-woven mats. Biocidal non-woven mats prepared by methods of the invention, incorporating the biocidal oligomers, can be used to suppress bacterial growth in wound and surgical dressings and personal hygiene products.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 28, 2014
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: David G. Whitten, Kirk S. Schanze, Eunkyung Ji, Dimitri Dascier, Anand Parthasarathy, Thomas S. Corbitt, Kirsten Cicotte, Elizabeth LeBleu Dirk, Xuzhi Zhu
  • Patent number: 8809212
    Abstract: Methods and apparatus for forming non-woven fiber mats from polymers and monomers that are traditionally difficult to use for fiber formation are shown and described. Applicable techniques include electrospinning and other traditional fiber formation methods. Suitable polymers and monomers include those having low molecular weight, a low melting point, and/or a low glass transition temperature.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: August 19, 2014
    Assignee: STC.UNM
    Inventors: Elizabeth Dirk, Shawn Dirk, Kirsten Cicotte
  • Publication number: 20140121328
    Abstract: A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
    Type: Application
    Filed: January 6, 2014
    Publication date: May 1, 2014
    Applicant: STC.UNM
    Inventors: Elizabeth L Hedberg-Dirk, Shawn Dirk, Kirsten Cicotte
  • Patent number: 8648167
    Abstract: A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: February 11, 2014
    Assignee: STC UNM
    Inventors: Elizabeth L Hedberg-Dirk, Shawn Dirk, Kirsten Cicotte