Patents by Inventor Kishan Khemani
Kishan Khemani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11718733Abstract: In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device.Type: GrantFiled: April 14, 2021Date of Patent: August 8, 2023Assignee: PLANTIC TECHNOLOGIES LTD.Inventors: Kishan Khemani, Graeme Moad, Edmond Lascaris, Guoxin Li, George Simon, Jana Habsuda, Robert Shanks, Antonietta Genovese, Wasantha Gunaratne, Lance Nichols
-
Publication number: 20210246286Abstract: In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device.Type: ApplicationFiled: April 14, 2021Publication date: August 12, 2021Applicant: Plantic Technologies Ltd.Inventors: Kishan Khemani, Graeme Moad, Edmond Lascaris, Guoxin Li, George Simon, Jana Habsuda, Robert Shanks, Antonietta Genovese, Wasantha Gunaratne, Lance Nichols
-
Patent number: 11008442Abstract: In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device.Type: GrantFiled: June 21, 2017Date of Patent: May 18, 2021Assignee: PLANTIC TECHNOLOGIES LTD.Inventors: Kishan Khemani, Graeme Moad, Edmond Lascaris, Guoxin Li, George Simon, Jana Habsuda, Robert Shanks, Antonietta Genovese, Wasantha Gunaratne, Lance Nichols
-
Publication number: 20170283579Abstract: In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device.Type: ApplicationFiled: June 21, 2017Publication date: October 5, 2017Applicant: Plantic Technologies Ltd.Inventors: Kishan Khemani, Graeme Moad, Edmond Lascaris, Guoxin Li, George Simon, Jana Habsuda, Robert Shanks, Antonietta Genovese, Wasantha Gunaratne, Lance Nichols
-
Patent number: 9745453Abstract: In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device.Type: GrantFiled: June 2, 2008Date of Patent: August 29, 2017Assignee: Plantic Technologies Ltd.Inventors: Kishan Khemani, Graeme Moad, Edmond Lascaris, Guoxin Li, George Simon, Jana Habsuda, Robert Shanks, Antonietta Genovese, Wasantha Gunaratne, Lance Nichols
-
Patent number: 8697245Abstract: A biodegradable injection mouldable polymer composition including on a dry weight basis from 45-85% w/w by weight of a starch and/or a modified high amylose starch, from 2-15% w/w by weight of a water soluble polymer preferably selected from polyvinyl alcohol, polyvinyl acetate and copolymers of ethylene and vinyl alcohol which have a melting point compatible with the molten state of the starch components, and from 5-45% w/w by weight of one or more polyol plasticizers having a molecular weight in the range of 50-6000, more preferably 50-2500, and still more preferably 100-400 and preferably selected from the group consisting of sorbitol, glycerol, maltitol, xylitol, mannitol, erythritol, polyglycerol, glycerol trioleate, tributyl citrate, acetyl tri-ethyl citrate, glyceryl triacetate, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, polyethylene oxide, ethylene glycol, diethylene glycol or polyethylene glycol; more preferably glycerol, maltitol, sorbitol, erythritol and xylitol.Type: GrantFiled: August 6, 2007Date of Patent: April 15, 2014Assignee: Plantic Technologies Ltd.Inventors: Kishan Khemani, Nicholas John McCaffrey, Rulande Henderson
-
Publication number: 20100307951Abstract: In one aspect, the invention provides a substantially exfoliated nanocomposite material including starch and hydrophobically modified layered silicate clay. In another aspect, the invention provides packaging made from material including the substantially exfoliated nanocomposite material described above. The nanocomposite material has improved mechanical and rheological properties and reduced sensitivity to moisture in that the rates of moisture update and/or loss are reduced. In another aspect, the invention provides a process for preparing the substantially exfoliated nanocomposite material described above, including a step of mixing the starch in the form of an aqueous gel with the hydrophobic clay in a melt mixing device.Type: ApplicationFiled: June 2, 2008Publication date: December 9, 2010Applicant: PLANTIC TECHNOLOGIES LTD.Inventors: Kishan Khemani, Graeme Moad, Edmond Lascaris, Guoxin Li, George Simon, Jana Habsuda, Robert Shanks, Antonietta Genovese, Wasantha Gunaratne, Lance Nichols
-
Publication number: 20100297458Abstract: A biodegradable injection mouldable polymer composition including on a dry weight basis from 45-85% w/w by weight of a starch and/or a modified high amylose starch, from 2-15% w/w by weight of a water soluble polymer preferably selected from polyvinyl alcohol, polyvinyl acetate and copolymers of ethylene and vinyl alcohol which have a melting point compatible with the molten state of the starch components, and from 5-45% w/w by weight of one or more polyol plasticizers having a molecular weight in the range of 50-6000, more preferably 50-2500, and still more preferably 100-400 and preferably selected from the group consisting of sorbitol, glycerol, maltitol, xylitol, mannitol, erythritol, polyglycerol, glycerol trioleate, tributyl citrate, acetyl tri-ethyl citrate, glyceryl triacetate, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, polyethylene oxide, ethylene glycol, diethylene glycol or polyethylene glycol; more preferably glycerol, maltitol, sorbitol, erythritol and xylitol.Type: ApplicationFiled: August 6, 2007Publication date: November 25, 2010Applicant: PLANTIC TECHNOLOGIES LTD.Inventors: Kishan Khemani, Nicholas John McCaffrey, Rulande Henderson
-
Patent number: 7297394Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.Type: GrantFiled: March 1, 2002Date of Patent: November 20, 2007Assignee: bio-tec Biologische Naturverpackungen GmbH & Co. KGInventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
-
Patent number: 7241832Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.Type: GrantFiled: March 1, 2002Date of Patent: July 10, 2007Assignee: bio-tec Biologische Naturverpackungen GmbH & Co., KGInventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
-
Patent number: 7214414Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from a blend of suitable biodegradable polymers, such as at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.Type: GrantFiled: April 12, 2005Date of Patent: May 8, 2007Assignee: biotec Biologische Naturverpackungen GmbInventors: Kishan Khemani, Harald Schmidt, Simon Hodson
-
Publication number: 20050182196Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from a blend of suitable biodegradable polymers, such as at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.Type: ApplicationFiled: April 12, 2005Publication date: August 18, 2005Applicant: biotec Biologische Naturverpackungen GmbInventors: Kishan Khemani, Harald Schmidt, Simon Hodson
-
Publication number: 20030166748Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler.Type: ApplicationFiled: March 1, 2002Publication date: September 4, 2003Inventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
-
Publication number: 20030166779Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials are manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides, polyesterurethanes, thermoplastic starch, and other natural polymers. The polymer blends may optionally include an inorganic filler.Type: ApplicationFiled: March 1, 2002Publication date: September 4, 2003Inventors: Kishan Khemani, Harald Schmidt, Simon K. Hodson
-
Patent number: 6573340Abstract: Biodegradable polymer blends suitable for laminate coatings, wraps and other packaging materials manufactured from at least one “hard” biopolymer and at least one “soft” biopolymer. “Hard” biopolymers tend to be more brittle and rigid and typically have a glass transition temperature greater than about 10° C. “Soft” biopolymers tend to be more flexible and pliable and typically have a glass transition temperature less than about 0° C. While hard and soft polymers each possess certain intrinsic benefits, certain blends of hard and soft polymers have been discovered which possess synergistic properties superior to those of either hard or soft polymers by themselves. Biodegradable polymers include polyesters, polyesteramides and thermoplastically processable starch. The polymer blends may optionally include an inorganic filler. Films and sheets made from the polymer blends may be textured so as to increase the bulk hand feel.Type: GrantFiled: August 23, 2000Date of Patent: June 3, 2003Assignee: Biotec Biologische Naturverpackungen GmbH & Co. KGInventors: Kishan Khemani, Per Just Andersen, Simon K. Hodson, Harald Schmidt