Patents by Inventor KISHOR KALATHIPARAMBIL

KISHOR KALATHIPARAMBIL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11932934
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: March 19, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Publication number: 20230113961
    Abstract: Embodiments of the disclosure relate to methods for enlarging the opening width of substrate features by reducing the overhang of deposited films. Some embodiments of the disclosure utilize a high power bias pulse to etch the deposited film near the opening of the substrate feature. Some embodiments of the disclosure etch the deposited film without damaging the underlying substrate.
    Type: Application
    Filed: December 14, 2022
    Publication date: April 13, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Komal S. Garde, Kishor Kalathiparambil, Joung Joo Lee, Xianmin Tang
  • Publication number: 20230002885
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Application
    Filed: September 9, 2022
    Publication date: January 5, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Patent number: 11473189
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Patent number: 11289312
    Abstract: Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments a process kit configured for use in a process chamber for processing a substrate includes a shield having a cylindrical body having an upper portion and a lower portion; an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; and a heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the processes chamber to heat the shield.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adolph M. Allen, Vanessa Faune, Zhong Qiang Hua, Kirankumar Neelasandra Savandaiah, Anantha K. Subramani, Philip A. Kraus, Tza-Jing Gung, Lei Zhou, Halbert Chong, Vaibhav Soni, Kishor Kalathiparambil
  • Patent number: 11222816
    Abstract: A method of filling structures on a substrate uses a semi-dynamic reflow process. The method may include depositing a metallic material on the substrate at a first temperature, heating the substrate to a second temperature higher than the first temperature wherein heating of the substrate causes a static reflow of the deposited metallic material on the substrate, stopping heating of the substrate, and depositing additional metallic material on the substrate causing a dynamic reflow of the deposited additional metallic material on the substrate. RF bias power may be applied during the dynamic reflow to facilitate in maintaining the temperature of the substrate.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 11, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lanlan Zhong, Shirish A. Pethe, Fuhong Zhang, Joung Joo Lee, Kishor Kalathiparambil, Xiangjin Xie, Xianmin Tang
  • Publication number: 20210391176
    Abstract: Embodiments of the disclosure relate to methods for enlarging the opening width of substrate features by reducing the overhang of deposited films. Some embodiments of the disclosure utilize a highly energetic bias pulse to etch the deposited film near the opening of the substrate feature. Some embodiments of the disclosure etch the deposited film without damaging the underlying substrate.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bencherki Mebarki, Komal S. Garde, Kishor Kalathiparambil, Joung Joo Lee, Xianmin Tang
  • Publication number: 20210391214
    Abstract: A method of filling structures on a substrate uses a semi-dynamic reflow process. The method may include depositing a metallic material on the substrate at a first temperature, heating the substrate to a second temperature higher than the first temperature wherein heating of the substrate causes a static reflow of the deposited metallic material on the substrate, stopping heating of the substrate, and depositing additional metallic material on the substrate causing a dynamic reflow of the deposited additional metallic material on the substrate. RF bias power may be applied during the dynamic reflow to facilitate in maintaining the temperature of the substrate.
    Type: Application
    Filed: June 16, 2020
    Publication date: December 16, 2021
    Inventors: Lanlan ZHONG, Shirish A. PETHE, Fuhong ZHANG, Joung Joo LEE, Kishor KALATHIPARAMBIL, Xiangjin XIE, Xianmin TANG
  • Publication number: 20200395198
    Abstract: Embodiments of process kit shields and process chambers incorporating same are provided herein. In some embodiments a process kit configured for use in a process chamber for processing a substrate includes a shield having a cylindrical body having an upper portion and a lower portion; an adapter section configured to be supported on walls of the process chamber and having a resting surface to support the shield; and a heater coupled to the adapter section and configured to be electrically coupled to at least one power source of the processes chamber to heat the shield.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 17, 2020
    Inventors: ADOLPH M. ALLEN, VANESSA FAUNE, ZHONG QIANG HUA, KIRANKUMAR NEELASANDRA SAVANDAIAH, ANANTHA K. SUBRAMANI, PHILIP A. KRAUS, TZA-JING GUNG, LEI ZHOU, HALBERT CHONG, VAIBHAV SONI, KISHOR KALATHIPARAMBIL
  • Publication number: 20200255938
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Application
    Filed: February 11, 2020
    Publication date: August 13, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Publication number: 20200048760
    Abstract: Methods of forming a film layer using a HiPIMS PVD process include providing a bias to a substrate in a processing region of a process chamber, the substrate comprising a surface feature and the processing region of the process chamber comprising a sputter target, delivering at least one energy pulse to the sputter target to create a sputtering plasma of a sputter gas in the processing region, the at least one energy pulse having an average voltage between about 600 volts and about 1500 volts and an average current between about 50 amps and about 1000 amps at a frequency which is less than 5 kHz and greater than 100 Hz, and directing the sputtering plasma toward the sputter target to form an ionized species comprising material sputtered from the sputter target, the ionized species forming a film in the feature of the substrate having improved bottom coverage.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 13, 2020
    Inventors: KISHOR KALATHIPARAMBIL, ADOLPH M ALLEN, JIANXIN LEI, JOTHILINGAM RAMALINGAM, VIACHSLAV BABAYAN