Patents by Inventor Kishore JAGANATHAN
Kishore JAGANATHAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12354008Abstract: The technology disclosed compresses a larger, teacher base caller into a smaller, student base caller. The student base caller has fewer processing modules and parameters than the teacher base caller. The teacher base caller is trained using hard labels (e.g., one-hot encodings). The trained teacher base caller is used to generate soft labels as output probabilities during the inference phase. The soft labels are used to train the student base caller.Type: GrantFiled: February 15, 2021Date of Patent: July 8, 2025Assignee: Illumina, Inc.Inventors: Anindita Dutta, Gery Vessere, Dorna Kashefhaghighi, Kishore Jaganathan, Amirali Kia
-
Publication number: 20250201348Abstract: The technology disclosed relates to detecting gene conservation and expression preservation. In particular, the technology disclosed relates to detecting gene conservation and epigenetic signals for a reference genetic sequence in comparison to a variant of the reference genetic sequence at base resolution through the generation of a plurality of alternative representations of the sequence in chromatin form which may represent evolutionary conservation, transcription initiation, or epigenetic signals, mapping the plurality of alternative chromatin sequences to a gene expression alterability classifier to generate a gene expression class prediction for the variant, and mapping the alternative chromatin sequence to a pathogenicity predictor to detect pathogenicity of variants.Type: ApplicationFiled: August 4, 2023Publication date: June 19, 2025Inventor: Kishore Jaganathan
-
Patent number: 12277998Abstract: The technology disclosed processes input data through a neural network and produces an alternative representation of the input data. The input data includes per-cycle image data for each of one or more sequencing cycles of a sequencing run. The per-cycle image data depicts intensity emissions of one or more analytes and their surrounding background captured at a respective sequencing cycle. The technology disclosed processes the alternative representation through an output layer and producing an output and base calls one or more of the analytes at one or more of the sequencing cycles based on the output.Type: GrantFiled: February 2, 2023Date of Patent: April 15, 2025Assignee: Illumina, Inc.Inventors: Kishore Jaganathan, John Randall Gobbel, Amirali Kia
-
Publication number: 20250095786Abstract: The technology disclosed relates to artificial intelligence-based base calling. The technology disclosed relates to accessing a progression of per-cycle analyte channel sets generated for sequencing cycles of a sequencing run, processing, through a neural network-based base caller (NNBC), windows of per-cycle analyte channel sets in the progression for the windows of sequencing cycles of the sequencing run such that the NNBC processes a subject window of per-cycle analyte channel sets in the progression for the subject window of sequencing cycles of the sequencing run and generates provisional base call predictions for three or more sequencing cycles in the subject window of sequencing cycles, from multiple windows in which a particular sequencing cycle appeared at different positions, using the NNBC to generate provisional base call predictions for the particular sequencing cycle, and determining a base call for the particular sequencing cycle based on the plurality of base call predictions.Type: ApplicationFiled: August 23, 2024Publication date: March 20, 2025Inventors: Anindita Dutta, Gery Vessere, Dorna KashefHaghighi, Kishore Jaganathan, Amirali Kia
-
Publication number: 20250069704Abstract: A system, a method and a non-transitory computer readable storage medium for base calling are described. The base calling method includes processing through a neural network first image data comprising images of clusters and their surrounding background captured by a sequencing system for one or more sequencing cycles of a sequencing run. The base calling method further includes producing a base call for one or more of the clusters of the one or more sequencing cycles of the sequencing run.Type: ApplicationFiled: August 28, 2024Publication date: February 27, 2025Inventors: Kishore JAGANATHAN, John Randall GOBBEL, Amirali KIA
-
Patent number: 12217831Abstract: The technology disclosed assigns quality scores to bases called by a neural network-based base caller by (i) quantizing classification scores of predicted base calls produced by the neural network-based base caller in response to processing training data during training, (ii) selecting a set of quantized classification scores, (iii) for each quantized classification score in the set, determining a base calling error rate by comparing its predicted base calls to corresponding ground truth base calls, (iv) determining a fit between the quantized classification scores and their base calling error rates, and (v) correlating the quality scores to the quantized classification scores based on the fit.Type: GrantFiled: April 5, 2023Date of Patent: February 4, 2025Assignee: Illumina, Inc.Inventors: Kishore Jaganathan, John Randall Gobbel, Amirali Kia
-
Patent number: 12165742Abstract: The technology disclosed relates to splice site prediction and aberrant splicing detection. In particular, it relates to a splice site predictor that includes a convolutional neural network trained on training examples of donor splice sites, acceptor splice sites, and non-splicing sites. An input stage of the convolutional neural network feeds an input sequence of nucleotides for evaluation of target nucleotides in the input sequence. An output stage of the convolutional neural network translates analysis by the convolutional neural network into classification scores for likelihoods that each of the target nucleotides is a donor splice site, an acceptor splice site, and a non-splicing site.Type: GrantFiled: September 29, 2023Date of Patent: December 10, 2024Assignee: Illumina, Inc.Inventors: Kishore Jaganathan, Kai-How Farh, Jeremy Francis McRae, Sofia Kyriazopoulou Panagiotopoulou
-
Patent number: 12119088Abstract: A system, a method and a non-transitory computer readable storage medium for base calling are described. The base calling method includes processing through a neural network first image data comprising images of clusters and their surrounding background captured by a sequencing system for one or more sequencing cycles of a sequencing run. The base calling method further includes producing a base call for one or more of the clusters of the one or more sequencing cycles of the sequencing run.Type: GrantFiled: August 30, 2022Date of Patent: October 15, 2024Assignee: Illumina, Inc.Inventors: Kishore Jaganathan, Anindita Dutta, Dorna Kashefhaghighi, John Randall Gobbel, Amirali Kia
-
Patent number: 12106829Abstract: The technology disclosed relates to artificial intelligence-based base calling. The technology disclosed relates to accessing a progression of per-cycle analyte channel sets generated for sequencing cycles of a sequencing run, processing, through a neural network-based base caller (NNBC), windows of per-cycle analyte channel sets in the progression for the windows of sequencing cycles of the sequencing run such that the NNBC processes a subject window of per-cycle analyte channel sets in the progression for the subject window of sequencing cycles of the sequencing run and generates provisional base call predictions for three or more sequencing cycles in the subject window of sequencing cycles, from multiple windows in which a particular sequencing cycle appeared at different positions, using the NNBC to generate provisional base call predictions for the particular sequencing cycle, and determining a base call for the particular sequencing cycle based on the plurality of base call predictions.Type: GrantFiled: July 13, 2023Date of Patent: October 1, 2024Assignee: Illumina, Inc.Inventors: Anindita Dutta, Gery Vessere, Dorna KashefHaghighi, Kishore Jaganathan, Amirali Kia
-
Publication number: 20240071573Abstract: The technology disclosed assigns quality scores to bases called by a neural network-based base caller by (i) quantizing classification scores of predicted base calls produced by the neural network-based base caller in response to processing training data during training, (ii) selecting a set of quantized classification scores, (iii) for each quantized classification score in the set, determining a base calling error rate by comparing its predicted base calls to corresponding ground truth base calls, (iv) determining a fit between the quantized classification scores and their base calling error rates, and (v) correlating the quality scores to the quantized classification scores based on the fit.Type: ApplicationFiled: April 5, 2023Publication date: February 29, 2024Inventors: Kishore JAGANATHAN, John Randall GOBBEL, Amirali KIA
-
Publication number: 20240055078Abstract: The technology disclosed relates to artificial intelligence-based base calling. The technology disclosed relates to accessing a progression of per-cycle analyte channel sets generated for sequencing cycles of a sequencing run, processing, through a neural network-based base caller (NNBC), windows of per-cycle analyte channel sets in the progression for the windows of sequencing cycles of the sequencing run such that the NNBC processes a subject window of per-cycle analyte channel sets in the progression for the subject window of sequencing cycles of the sequencing run and generates provisional base call predictions for three or more sequencing cycles in the subject window of sequencing cycles, from multiple windows in which a particular sequencing cycle appeared at different positions, using the NNBC to generate provisional base call predictions for the particular sequencing cycle, and determining a base call for the particular sequencing cycle based on the plurality of base call predictions.Type: ApplicationFiled: July 13, 2023Publication date: February 15, 2024Inventors: Anindita Dutta, Gery Vessere, Dorna KashefHaghighi, Kishore Jaganathan, Amirali Kia
-
Publication number: 20240055072Abstract: The technology disclosed relates to splice site prediction and aberrant splicing detection. In particular, it relates to a splice site predictor that includes a convolutional neural network trained on training examples of donor splice sites, acceptor splice sites, and non-splicing sites. An input stage of the convolutional neural network feeds an input sequence of nucleotides for evaluation of target nucleotides in the input sequence. An output stage of the convolutional neural network translates analysis by the convolutional neural network into classification scores for likelihoods that each of the target nucleotides is a donor splice site, an acceptor splice site, and a non-splicing site.Type: ApplicationFiled: September 29, 2023Publication date: February 15, 2024Inventors: Kishore Jaganathan, Kai-How Farh, Jeremy Francis McRae, Sofia Kyriazopoulou Panagiotopoulou
-
Publication number: 20240013856Abstract: The technology disclosed relates to splice site prediction and aberrant splicing detection. In particular, it relates to a splice site predictor that includes a convolutional neural network trained on training examples of donor splice sites, acceptor splice sites, and non-splicing sites. An input stage of the convolutional neural network feeds an input sequence of nucleotides for evaluation of target nucleotides in the input sequence. An output stage of the convolutional neural network translates analysis by the convolutional neural network into classification scores for likelihoods that each of the target nucleotides is a donor splice site, an acceptor splice site, and a non-splicing site.Type: ApplicationFiled: July 26, 2022Publication date: January 11, 2024Applicant: Illumina, Inc.Inventors: Kishore Jaganathan, Kai-how Farh, Jeremy F. McRAE, Sofia Kyriazopoulou Panagiotopoulou
-
Patent number: 11837324Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional neural network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.Type: GrantFiled: October 15, 2018Date of Patent: December 5, 2023Assignee: Illumina, Inc.Inventors: Kishore Jaganathan, Kai-How Farh, Sofia Kyriazopoulou Panagiotopoulou, Jeremy Francis McRae
-
Patent number: 11783917Abstract: The technology disclosed processes input data through a neural network and produces an alternative representation of the input data. The input data includes per-cycle image data for each of one or more sequencing cycles of a sequencing run. The per-cycle image data depicts intensity emissions of one or more analytes and their surrounding background captured at a respective sequencing cycle. The technology disclosed processes the alternative representation through an output layer and producing an output and base calls one or more of the analytes at one or more of the sequencing cycles based on the output.Type: GrantFiled: March 20, 2020Date of Patent: October 10, 2023Inventors: Kishore Jaganathan, John Randall Gobbel, Amirali Kia
-
Patent number: 11749380Abstract: The technology disclosed relates to artificial intelligence-based base calling. The technology disclosed relates to accessing a progression of per-cycle analyte channel sets generated for sequencing cycles of a sequencing run, processing, through a neural network-based base caller (NNBC), windows of per-cycle analyte channel sets in the progression for the windows of sequencing cycles of the sequencing run such that the NNBC processes a subject window of per-cycle analyte channel sets in the progression for the subject window of sequencing cycles of the sequencing run and generates provisional base call predictions for three or more sequencing cycles in the subject window of sequencing cycles, from multiple windows in which a particular sequencing cycle appeared at different positions, using the NNBC to generate provisional base call predictions for the particular sequencing cycle, and determining a base call for the particular sequencing cycle based on the plurality of base call predictions.Type: GrantFiled: February 19, 2021Date of Patent: September 5, 2023Assignee: Illumina, Inc.Inventors: Anindita Dutta, Gery Vessere, Dorna Kashefhaghighi, Kishore Jaganathan, Amirali Kia
-
Publication number: 20230268033Abstract: The technology disclosed processes input data through a neural network and produces an alternative representation of the input data. The input data includes per-cycle image data for each of one or more sequencing cycles of a sequencing run. The per-cycle image data depicts intensity emissions of one or more analytes and their surrounding background captured at a respective sequencing cycle. The technology disclosed processes the alternative representation through an output layer and producing an output and base calls one or more of the analytes at one or more of the sequencing cycles based on the output.Type: ApplicationFiled: February 2, 2023Publication date: August 24, 2023Inventors: Kishore JAGANATHAN, John Randall GOBBEL, Amirali KIA
-
Patent number: 11676685Abstract: The technology disclosed assigns quality scores to bases called by a neural network-based base caller by (i) quantizing classification scores of predicted base calls produced by the neural network-based base caller in response to processing training data during training, (ii) selecting a set of quantized classification scores, (iii) for each quantized classification score in the set, determining a base calling error rate by comparing its predicted base calls to corresponding ground truth base calls, (iv) determining a fit between the quantized classification scores and their base calling error rates, and (v) correlating the quality scores to the quantized classification scores based on the fit.Type: GrantFiled: March 20, 2020Date of Patent: June 13, 2023Assignee: Illumina, Inc.Inventors: Kishore Jaganathan, John Randall Gobbel, Amirali Kia
-
Publication number: 20230059877Abstract: The technology disclosed relates to constructing a convolutional neural network-based classifier for variant classification. In particular, it relates to training a convolutional neural network-based classifier on training data using a backpropagation-based gradient update technique that progressively match outputs of the convolutional network network-based classifier with corresponding ground truth labels. The convolutional neural network-based classifier comprises groups of residual blocks, each group of residual blocks is parameterized by a number of convolution filters in the residual blocks, a convolution window size of the residual blocks, and an atrous convolution rate of the residual blocks, the size of convolution window varies between groups of residual blocks, the atrous convolution rate varies between groups of residual blocks. The training data includes benign training examples and pathogenic training examples of translated sequence pairs generated from benign variants and pathogenic variants.Type: ApplicationFiled: October 20, 2022Publication date: February 23, 2023Applicant: Illumina, Inc.Inventors: Kishore JAGANATHAN, Kai-How FARH, Sofia KYRIAZOPOULOU PANAGIOTOPOULOU, Jeremy Francis MCRAE
-
Publication number: 20230004749Abstract: A system, a method and a non-transitory computer readable storage medium for base calling are described. The base calling method includes processing through a neural network first image data comprising images of clusters and their surrounding background captured by a sequencing system for one or more sequencing cycles of a sequencing run. The base calling method further includes producing a base call for one or more of the clusters of the one or more sequencing cycles of the sequencing run.Type: ApplicationFiled: August 30, 2022Publication date: January 5, 2023Applicant: ILLUMINA, INC.Inventors: Kishore JAGANATHAN, Anindita DUTTA, Dorna KASHEFHAGHIGHI, John Randall GOBBEL, Amirali KIA