Patents by Inventor Kishore Kumar Tenneti

Kishore Kumar Tenneti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11878343
    Abstract: The present disclosure is directed, in certain embodiments, a component of a mechanical apparatus. The component includes a cast body with an initial structure formed by a mold and at least one feature deposited on the cast body using a solid state additive manufacturing process, such that in combination the initial structure and the at least one feature form a complete structure of the component.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: January 23, 2024
    Assignee: Lockheed Martin Corporation
    Inventors: Ryan Patry, Kishore Kumar Tenneti, William Paul Fallon, Jr., Nathaniel Ferguson Dew
  • Publication number: 20230173576
    Abstract: The present disclosure is directed, in certain embodiments, a component of a mechanical apparatus. The component includes a cast body with an initial structure formed by a mold and at least one feature deposited on the cast body using a solid state additive manufacturing process, such that in combination the initial structure and the at least one feature form a complete structure of the component.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 8, 2023
    Inventors: Ryan Patry, Kishore Kumar Tenneti, William Paul Fallon, Jr., Nathaniel Ferguson Dew
  • Patent number: 11557770
    Abstract: An illustrative method of making a fuel cell component includes obtaining at least one blank plate including graphite and a polymer; establishing a temperature of the blank that is sufficient to maintain the polymer in an at least partially molten state; and applying a compression molding force to the blank until the polymer is essentially solidified to form a plate including a plurality of channels on at least one side of the plate. The blank plate has a central area having a first thickness. The blank plate also has two generally parallel edges on opposite sides of the central area. The edges have a second thickness that is greater than the first thickness.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: January 17, 2023
    Assignee: Hyaxiom, Inc.
    Inventors: Richard D. Breault, Kishore Kumar Tenneti
  • Patent number: 10766173
    Abstract: A method of manufacturing a flow field plate includes mixing graphite and resin materials to provide a mixture. The mixture is formed into a continuous flow field plate, for example, by ram extrusion or one or more press belts. The continuous flow field plate is separated into discrete flow field plates. Flow field channels are provided in one of the continuous flow field plate and the discrete flow field plates.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: September 8, 2020
    Assignee: Audi AG
    Inventors: Richard Breault, Kishore Kumar Tenneti, Sridhar V. Kanuri
  • Patent number: 10637080
    Abstract: A composite plate (26) is formed in a mold (8) by placing one of two preforms (15, 23) of between about 80 wt. % and about 85 wt. % flake graphite, balance polymer binder, into the mold and disposing a coolant tube array (18) thereon, depositing a powder (21) of the flake/polymer around the tube array, placing a second preform on the powder and a mold plunger (27) on the second preform, heating the mold to the melting temperature of the polymer under a pressure of 625 psi (4311 kPa), cooling the mold to the solidification temperature of the polymer while still under pressure, cooling the mold further, disassembling the mold, and removing the composite plate. The composite plate has reactant gas flow field channels (31, 32) in major surfaces thereof, is devoid of any acid edge protection layer or film and is devoid of any acid impervious separator plate between either of the fuel cell reactant gas flow fields and the coolant tube array.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: April 28, 2020
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Richard D. Breault, Kishore Kumar Tenneti, Sridhar V. Kanuri, Richard J. Rempe
  • Patent number: 10396382
    Abstract: An illustrative example cell stack assembly includes a plurality of fuel cells that each include a cathode electrode, an anode electrode and a matrix for holding a liquid acid electrolyte. The electrodes have lateral outside edges that are generally coplanar. A plurality of separator plates are respectively between the cathode electrode of one of the fuel cells and the anode electrode of an adjacent one of the fuel cells. The separator plates have lateral outside edges that are generally coplanar with the lateral outside edges of the electrodes. A plurality of barriers along at least one of the lateral outside edges of respective ones of the separator plates extend outwardly beyond the lateral outside edges of the electrodes and separator plates. The barriers inhibit acid migration between one of the electrodes on one side of the barrier and one of the electrodes on an opposite side of the barrier.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 27, 2019
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Sridhar V. Kanuri, Richard D. Breault, Kishore Kumar Tenneti, Ned E. Cipollini
  • Patent number: 10170783
    Abstract: A stack (10) of fuel cells (11) is manufactured with barriers (32) to prevent migration of a liquid electrolyte (such as phosphoric acid) out of the cells (11). The barrier (32) is secured within a step (34) formed within a land region (28) of a separator plate assembly (18) and extends from an edge (30) of the separator plate assembly (18) all or a portion of a distance between the edge (30) and a flow channel (24) defined within the separator plate assembly (18). The barrier (32) also extends away from the edge (30) a distance of between 0.051 and about 2.0 millimeters (about 2 and about 80 mils. The barrier (32) includes a hydrophobic, polymeric film (36), a pressure sensitive adhesive (38) as an assembly aid, and a fluoroelastomer bonding agent (40).
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 1, 2019
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Sridhar V. Kanuri, Richard D. Breault, Kishore Kumar Tenneti, Ned E. Cipollini, Frank E. Kenney, III
  • Publication number: 20180053954
    Abstract: An illustrative example cell stack assembly includes a plurality of fuel cells that each include a cathode electrode, an anode electrode and a matrix for holding a liquid acid electrolyte. The electrodes have lateral outside edges that are generally coplanar. A plurality of separator plates are respectively between the cathode electrode of one of the fuel cells and the anode electrode of an adjacent one of the fuel cells. The separator plates have lateral outside edges that are generally coplanar with the lateral outside edges of the electrodes. A plurality of barriers along at least one of the lateral outside edges of respective ones of the separator plates extend outwardly beyond the lateral outside edges of the electrodes and separator plates. The barriers inhibit acid migration between one of the electrodes on one side of the barrier and one of the electrodes on an opposite side of the barrier.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Inventors: Sridhar V. Kanuri, Richard D. Breault, Kishore Kumar Tenneti, Ned E. Cipollini
  • Patent number: 9812724
    Abstract: A stack (10) of fuel cells (11) is provided with barriers (32) to prevent migration of a liquid electrolyte (such as phosphoric acid) out of the cells (11). The barrier (32) is secured within a step (34) defined within a land region (28) of a separator plate assembly (18) and extends from an edge (30) of the separator plate assembly (18) all or a portion of a distance between the edge (30) and a flow channel (24) defined within the separator plate assembly (18). The barrier (32) also extends away from the edge (30) a distance of between 0.051 and 2.0 millimeters (2 and 80 mils). The barrier (32) includes a hydrophobic, polymeric film (36), a pressure sensitive adhesive (38), as an assembly aid, and a fluoroelastomer bonding agent (40).
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: November 7, 2017
    Assignee: DOOSAN FUEL CELL AMERICA, INC.
    Inventors: Sridhar V. Kanuri, Richard D Breault, Kishore Kumar Tenneti, Ned E. Cipollini
  • Publication number: 20170170490
    Abstract: A fuel cell separator plate includes flake graphite particles having a length along a planar direction and a thickness along a generally perpendicular direction. The flake graphite has an aspect ratio of length to thickness that is less than ten.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 15, 2017
    Inventors: Richard D. Breault, Kishore Kumar Tenneti
  • Publication number: 20170012298
    Abstract: An illustrative method of making a fuel cell component includes obtaining at least one blank plate including graphite and a polymer; establishing a temperature of the blank that is sufficient to maintain the polymer in an at least partially molten state; and applying a compression molding force to the blank until the polymer is essentially solidified to form a plate including a plurality of channels on at least one side of the plate. The blank plate has a central area having a first thickness. The blank plate also has two generally parallel edges on opposite sides of the central area. The edges have a second thickness that is greater than the first thickness.
    Type: Application
    Filed: February 27, 2014
    Publication date: January 12, 2017
    Inventors: Richard D. Breault, Kishore Kumar Tenneti
  • Publication number: 20140338825
    Abstract: A method of manufacturing a flow field plate includes mixing graphite and resin materials to provide a mixture. The mixture is formed into a continuous flow field plate, for example, by ram extrusion or one or more press belts. The continuous flow field plate is separated into discrete flow field plates. Flow field channels are provided in one of the continuous flow field plate and the discrete flow field plates.
    Type: Application
    Filed: January 5, 2012
    Publication date: November 20, 2014
    Applicant: BALLARD POWER SYSTEMS INC.
    Inventors: Richard Breault, Kishore Kumar Tenneti, Sridhar V. Kanuri
  • Publication number: 20140295300
    Abstract: A composite plate (26) is formed in a mold (8) by placing one of two preforms (15, 23) of between about 80 wt.% and about 85 wt.% flake graphite, balance polymer binder, into the mold and disposing a coolant tube array (18) thereon, depositing a powder (21) of the flake/polymer around the tube array, placing a second preform on the powder and a mold plunger (27) on the second preform, heating the mold to the melting temperature of the polymer under a pressure of 625 psi (4311 kPa), cooling the mold to the solidification temperature of the polymer while still under pressure, cooling the mold further, disassembling the mold, and removing the composite plate. The composite plate has reactant gas flow field channels (31, 32) in major surfaces thereof, is devoid of any acid edge protection layer or film and is devoid of any acid impervious separator plate between either of the fuel cell reactant gas flow fields and the coolant tube array.
    Type: Application
    Filed: October 25, 2011
    Publication date: October 2, 2014
    Inventors: Richard D. Breault, Kishore Kumar Tenneti, Sridhar V. Kanuri, Richard J. Rempe
  • Publication number: 20120028160
    Abstract: A stack (10) of fuel cells (11) is provided with barriers (32) to prevent migration of a liquid electrolyte (such as phosphoric acid) out of the cells (11). The barrier (32) is secured within a step (34) defined within a land region (28) of a separator plate assembly (18) and extends from an edge (30) of the separator plate assembly (18) all or a portion of a distance between the edge (30) and a flow channel (24) defined within the separator plate assembly (18). The barrier (32) also extends away from the edge (30) a distance of between 0.051 and 2.0 millimeters (2 and 80 mils). The barrier (32) includes a hydrophobic, polymeric film (36), a pressure sensitive adhesive (38), as an assembly aid, and a fluoroelastomer bonding agent (40).
    Type: Application
    Filed: June 18, 2009
    Publication date: February 2, 2012
    Inventors: Sridhar V. Kanuri, Richard D. Breault, Kishore kumar Tenneti, Ned E. Cipollini
  • Publication number: 20120028172
    Abstract: A stack (10) of fuel cells (11) is manufactured with barriers (32) to prevent migration of a liquid electrolyte (such as phosphoric acid) out of the cells (11). The barrier (32) is secured within a step (34) formed within a land region (28) of a separator plate assembly (18) and extends from an edge (30) of the separator plate assembly (18) all or a portion of a distance between the edge (30) and a flow channel (24) defined within the separator plate assembly (18). The barrier (32) also extends away from the edge (30) a distance of between 0.051 and about 2.0 millimeters (about 2 and about 80 mils. The barrier (32) includes a hydrophobic, polymeric film (36), a pressure sensitive adhesive (38) as an assembly aid, and a fluoroelastomer bonding agent (40).
    Type: Application
    Filed: June 18, 2009
    Publication date: February 2, 2012
    Inventors: Sridhar V. Kanuri, Richard D. Breault, Kishore Kumar Tenneti, Ned E. Cipollini, Frank E. Kenney
  • Publication number: 20110177419
    Abstract: A fuel cell separator plate assembly (20, 20a) includes a separator layer (22, 22a) and one or more reactant flow field layers (24, 24a, 26, 26a) comprising graphite flakes and a thermoplastic, hydrophobic resin which secures flow field layers on opposite sides of the separator layer. In another example, a separator plate assembly (20a) comprises a monolithic structure in which the separator portion (22a) and the flow field portions (24a, 26a) are all formed in a single piece of the same material. A method heats thermoplastic resin to its point of complete melting, then cools to its point where melting begins, increasing both electric and thermal conductivity. Methods include bonding under higher pressure than previously used, about 800 psi, or under pressures about 750 psi.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 21, 2011
    Inventors: Warren L. Luoma, Robert P. Roche, Richard D. Breault, Sridhar V. Kanuri, Kishore Kumar Tenneti