Patents by Inventor Kishore Lavu

Kishore Lavu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8216933
    Abstract: A method of depositing a bilayer of tungsten over tungsten nitride by a plasma sputtering process in which krypton is used as the sputter working gas during the tungsten deposition. Argon may be used as the sputtering working gas during the reactive sputtering deposition of tungsten nitride. The beneficial effect of reduction of tungsten resistivity is increased when the thickness of the tungsten layer is less than 50 nm and further increased when less than 35 nm. The method may be used in forming a gate stack including a polysilicon layer over a gate oxide layer over a silicon gate region of a MOS transistor in which the tungsten nitride acts as a barrier. A plasma sputter chamber in which the invention may be practiced includes gas sources of krypton, argon, and nitrogen.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 10, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Wei D. Wang, Srinivas Gandikota, Kishore Lavu
  • Publication number: 20100330795
    Abstract: A method of depositing a bilayer of tungsten over tungsten nitride by a plasma sputtering process in which krypton is used as the sputter working gas during the tungsten deposition. Argon may be used as the sputtering working gas during the reactive sputtering deposition of tungsten nitride. The beneficial effect of reduction of tungsten resistivity is increased when the thickness of the tungsten layer is less than 50 nm and further increased when less than 35 nm. The method may be used in forming a gate stack including a polysilicon layer over a gate oxide layer over a silicon gate region of a MOS transistor in which the tungsten nitride acts as a barrier. A plasma sputter chamber in which the invention may be practiced includes gas sources of krypton, argon, and nitrogen.
    Type: Application
    Filed: August 31, 2010
    Publication date: December 30, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Wei D. Wang, Srinivas Gandikota, Kishore Lavu
  • Patent number: 7790604
    Abstract: A method of depositing a bilayer of tungsten over tungsten nitride by a plasma sputtering process in which krypton is used as the sputter working gas during the tungsten deposition. Argon may be used as the sputtering working gas during the reactive sputtering deposition of tungsten nitride. The beneficial effect of reduction of tungsten resistivity is increased when the thickness of the tungsten layer is less than 50 nm and further increased when less than 35 nm. The method may be used in forming a gate stack including a polysilicon layer over a gate oxide layer over a silicon gate region of a MOS transistor in which the tungsten nitride acts as a barrier. A plasma sputter chamber in which the invention may be practiced includes gas sources of krypton, argon, and nitrogen.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Wei D. Wang, Srinivas Gandikota, Kishore Lavu
  • Publication number: 20090053882
    Abstract: A method of depositing a bilayer of tungsten over tungsten nitride by a plasma sputtering process in which krypton is used as the sputter working gas during the tungsten deposition. Argon may be used as the sputtering working gas during the reactive sputtering deposition of tungsten nitride. The beneficial effect of reduction of tungsten resistivity is increased when the thickness of the tungsten layer is less than 50 nm and further increased when less than 35 nm. The method may be used in forming a gate stack including a polysilicon layer over a gate oxide layer over a silicon gate region of a MOS transistor in which the tungsten nitride acts as a barrier. A plasma sputter chamber in which the invention may be practiced includes gas sources of krypton, argon, and nitrogen.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 26, 2009
    Applicant: Applied Material, Inc.
    Inventors: WEI D. WANG, Srinivas Gandikota, Kishore Lavu