Patents by Inventor Kishore Padmaraju

Kishore Padmaraju has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230388016
    Abstract: An apparatus includes an optical device to output a data-modulated optical signal, an electrical radio-frequency (RF) driver to drive the optical device with one or more RF drive signals, a photodetector to provide a measure of a light intensity output by the optical device, and an electronic controller. The electronic controller is configured to dither an amplitude of at least one of the one or more RF drive signals at a dithering frequency. The electronic controller is also configured to adjust one or more operation settings of at least one of the electrical RF driver and the optical device based on a component of the measure of a light intensity at the dithering frequency.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 30, 2023
    Inventors: Kishore Padmaraju, Bernd-Harald Horst Juergen Rohde, Matthew Streshinsky
  • Patent number: 11086187
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A dither signal is applied to the modulator bias and its signature detected in light tapped from an output of the modulator using a phase sensitive dither detector such as a lock-in amplifier. The detected signal is processed using pre-recorded information defining the direction of the detected signal change relative to a change in the modulator bias, and the bias is adjusted in the direction determined using the information. An IQ bias of a quadrature modulator is controlled by dithering bias settings of two inner modulators at different dither frequencies, and detecting an oscillation at a sum frequency.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: August 10, 2021
    Assignee: Nokia Solutions & Networks Oy
    Inventors: Kishore Padmaraju, Thomas Wetteland Baehr-Jones, Bernd-Harald Horst Jurgen Rohde, Robert Palmer, Matthew Akio Streshinsky, Marc Bohn, Torsten Wuth
  • Publication number: 20200272019
    Abstract: Conventionally, wavelength locking and monitoring has been achieved used various components, including calibrated etalon filters, gratings, and arrays of color filters, which offer fairly bulky solutions that require complicated controls. An improved on-chip wavelength monitor comprises: a combination comb filter comprising a plurality of comb filters, each for receiving a test beams, and each comb filter including a substantially different FSR, e.g. 10× to 20× the next closest FSR. A controller dithers a phase tuning section of each comb filter to generate a maximum or minimum output in a corresponding photodetector indicative of the wavelength of the test signal.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Yang Liu, Yangjin Ma, Ran Ding, Thomas Wetteland Baehr-Jones, Saeed Fathololoumi, Kishore Padmaraju
  • Patent number: 10742324
    Abstract: A semiconductor-based Mach-Zehnder modulator (MZM) is configured for push-pull bias dithering to control the MZM bias at a desired set point. When two such MZM modulators are connected in parallel to form an IQ modulator, bias settings for both MZMs and the IQ bias may be controlled from an output of the IQ modulator to minimize both the IQ offset and the quadrature error of the output signal constellation even for non-ideal MZMs with low extinction ratios.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: August 11, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Kishore Padmaraju, Ruizhi Shi, Yangjin Ma, Matthew Streshinsky
  • Patent number: 10670939
    Abstract: Conventionally, wavelength locking and monitoring has been achieved used various components, including calibrated etalon filters, gratings, and arrays of color filters, which offer fairly bulky solutions that require complicated controls. An improved on-chip wavelength monitor comprises: a combination comb filter comprising a plurality of comb filters, each for receiving a test beams, and each comb filter including a substantially different FSR, e.g. 10× to 20× the next closest FSR. A controller dithers a phase tuning section of each comb filter to generate a maximum or minimum output in a corresponding photodetector indicative of the wavelength of the test signal.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 2, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Yang Liu, Yangjin Ma, Ran Ding, Thomas Wetteland Baehr-Jones, Saeed Fathololoumi, Kishore Padmaraju
  • Publication number: 20200081313
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A dither signal is applied to the modulator bias and its signature detected in light tapped from an output of the modulator using a phase sensitive dither detector such as a lock-in amplifier. The detected signal is processed using pre-recorded information defining the direction of the detected signal change relative to a change in the modulator bias, and the bias is adjusted in the direction determined using the information. An IQ bias of a quadrature modulator is controlled by dithering bias settings of two inner modulators at different dither frequencies, and detecting an oscillation at a sum frequency.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Kishore Padmaraju, Thomas Wetteland Baehr-Jones, Bernd-Harald Horst Jurgen Rohde, Robert Palmer, Matthew Akio Streshinsky, Marc Bohn, Torsten Wuth
  • Patent number: 10509295
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A dither signal is applied to the modulator bias and its signature detected in light tapped from an output of the modulator using a phase sensitive dither detector such as a lock-in amplifier. The detected signal is processed using pre-recorded information defining the direction of the detected signal change relative to a change in the modulator bias, and the bias is adjusted in the direction determined using the information. An IQ bias of a quadrature modulator is controlled by dithering bias settings of two inner modulators at different dither frequencies, and detecting an oscillation at a sum frequency.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: December 17, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Kishore Padmaraju, Thomas Wetteland Baehr-Jones, Bernd-Harald Horst Jurgen Rohde, Robert Palmer, Matthew Akio Streshinsky, Marc Bohn, Torsten Wuth
  • Publication number: 20190339547
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A portion of the modulator light is mixed with reference light and converted to one or more electrical feedback signals. An electrical feedback circuit controls the modulator bias responsive to the feedback signals.
    Type: Application
    Filed: July 22, 2019
    Publication date: November 7, 2019
    Inventors: Matthew Akio Streshinsky, Ari Novack, Kishore Padmaraju, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 10444451
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: October 15, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 10401655
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A portion of the modulator light is mixed with reference light and converted to one or more electrical feedback signals. An electrical feedback circuit controls the modulator bias responsive to the feedback signals.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 3, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Matthew Akio Streshinsky, Ari Novack, Kishore Padmaraju, Michael J. Hochberg, Alexander Rylyakov
  • Publication number: 20190196294
    Abstract: Conventionally, wavelength locking and monitoring has been achieved used various components, including calibrated etalon filters, gratings, and arrays of color filters, which offer fairly bulky solutions that require complicated controls. An improved on-chip wavelength monitor comprises: a combination comb filter comprising a plurality of comb filters, each for receiving a test beams, and each comb filter including a substantially different FSR, e.g. 10× to 20× the next closest FSR. A controller dithers a phase tuning section of each comb filter to generate a maximum or minimum output in a corresponding photodetector indicative of the wavelength of the test signal.
    Type: Application
    Filed: December 27, 2017
    Publication date: June 27, 2019
    Inventors: Yang Liu, Yangjin Ma, Ran Ding, Thomas Wetteland Baehr-Jones, Saeed Fathololoumi, Kishore Padmaraju
  • Publication number: 20190137709
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 10281747
    Abstract: A low-cost, robust method for automatically tuning a coupled resonator to match a wavelength of electromagnetic radiation emitted from an applied laser source. Dithering signals are used for automatic wavelength tuning and thermal stabilization of microring resonators. The disclosed method can be applied using low-speed analog and digital circuitry, to create a complete photonic interconnection network. The methods disclosed also automatically detect, measure, and correct for resonance shift.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: May 7, 2019
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Kishore Padmaraju, Keren Bergman
  • Patent number: 10209465
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: February 19, 2019
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Publication number: 20180267384
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A dither signal is applied to the modulator bias and its signature detected in light tapped from an output of the modulator using a phase sensitive dither detector such as a lock-in amplifier. The detected signal is processed using pre-recorded information defining the direction of the detected signal change relative to a change in the modulator bias, and the bias is adjusted in the direction determined using the information. An IQ bias of a quadrature modulator is controlled by dithering bias settings of two inner modulators at different dither frequencies, and detecting an oscillation at a sum frequency.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 20, 2018
    Inventors: Kishore Padmaraju, Thomas Wetteland Baehr-Jones, Bernd-Harald Horst Jurgen Rohde, Robert Palmer, Matthew Akio Streshinsky, Marc Bohn, Torsten Wuth
  • Publication number: 20180173023
    Abstract: An optical waveguide modulator with automatic bias control is disclosed. A portion of the modulator light is mixed with reference light and converted to one or more electrical feedback signals. An electrical feedback circuit controls the modulator bias responsive to the feedback signals.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 21, 2018
    Inventors: Matthew Akio Streshinsky, Ari Novack, Kishore Padmaraju, Michael J. Hochberg, Alexander Rylyakov
  • Patent number: 9831360
    Abstract: Embodiments of the present disclosure provide devices and methods involving the thermal stabilization of microring resonators, such as microring modulators. Power is measured via an on-chip photodetector integrated with a drop port of the microring resonator, providing a local measurement of average power. This average power is employed as a feedback measure to actively control a heater that is integrated with the microring resonator, in order to stabilize the resonant wavelength of the microring resonator in the presence of thermal fluctuations. Employing such a system, a microring modulator can maintain error-free performance under thermal fluctuations that would normally render it inoperable.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: November 28, 2017
    Assignees: McMaster University, The Trustees of Columbia University in the City of New York
    Inventors: Andrew Knights, Dylan Logan, Kishore Padmaraju, Keren Bergman
  • Publication number: 20170322373
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Application
    Filed: July 26, 2017
    Publication date: November 9, 2017
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: 9739938
    Abstract: A light shield may be formed in photonic integrated circuit between integrated optical devices of the photonic integrated circuit. The light shield may be built by using materials already present in the photonic integrated circuit, for example the light shield may include metal walls and doped semiconductor regions. Light-emitting or light-sensitive integrated optical devices or modules of a photonic integrated circuit may be constructed with light shields integrally built in.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: August 22, 2017
    Assignee: Elenion Technologies, LLC
    Inventors: Ruizhi Shi, Yang Liu, Ari Novack, Yangjin Ma, Kishore Padmaraju, Michael J. Hochberg
  • Patent number: RE48654
    Abstract: An optical device that includes means for thermal stabilization and control is described. The optical device can be a ring resonator, or another device that requires accurate control of the phase of the optical signal. In an example involving an optical resonator, a thermal stabilization system includes a temperature sensor, a control circuit, and a heater local to the resonator. The temperature sensor can be a bandgap temperature sensor formed of a pair of matched p/n junctions biased in operation at different junction currents.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: July 20, 2021
    Assignee: Nokia Solutions & Networks Oy
    Inventors: Yi Zhang, Shuyu Yang, Kishore Padmaraju, Michael J. Hochberg