Patents by Inventor Kishore Udipi

Kishore Udipi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180326071
    Abstract: A coated balloon device for stabilizing a section of a blood vessel in a living subject is disclosed. The coating layer of the coated balloon comprises a phenolic compound having a plurality of phenolic groups connected to form a hydrophobic core with peripheral phenolic hydroxyl groups. The coating layer of the coated balloon may contain a hydrophilic polymer to facilitate the release of the phenolic compound. The balloon in general is made of a compliant polymer for atraumatic contact with the blood vessel. In some embodiments, the coating of the coated balloon device further comprises a hydrophilic undercoat layer between the balloon and the coating layer. In some embodiments, the coated balloon device further comprises a sacrificial top coating that dissolves upon delivery into the section of the blood vessel and comprises a hydrophilic composition including sugar, sugar derivatives, or a combination thereof.
    Type: Application
    Filed: April 6, 2018
    Publication date: November 15, 2018
    Inventors: Matthew F. Ogle, Wenda C. Carlyle, Edward J. Anderson, Kishore Udipi
  • Patent number: 9937255
    Abstract: A coated balloon device for stabilizing a section of a blood vessel in a living subject is disclosed. The coating layer of the coated balloon comprises a phenolic compound having a plurality of phenolic groups connected to form a hydrophobic core with peripheral phenolic hydroxyl groups. The coating layer of the coated balloon may contain a hydrophilic polymer to facilitate the release of the phenolic compound. The balloon in general is made of a compliant polymer for atraumatic contact with the blood vessel. In some embodiments, the coating of the coated balloon device further comprises a hydrophilic undercoat layer between the balloon and the coating layer. In some embodiments, the coated balloon device further comprises a sacrificial top coating that dissolves upon delivery into the section of the blood vessel and comprises a hydrophilic composition including sugar, sugar derivatives, or a combination thereof.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: April 10, 2018
    Assignee: NECTERO MEDICAL, INC.
    Inventors: Matthew F. Ogle, Wenda C. Carlyle, Edward J. Anderson, Kishore Udipi
  • Patent number: 9687368
    Abstract: Biocompatible coatings for medical devices are disclosed. Specifically, polymer coatings designed to control the release of bioactive agents from medical devices in vivo are disclosed wherein the solubility parameters of polymers and drugs are closely matched to control elute rate profiles. The present application also discloses providing vascular stents with controlled release coatings and related methods for making these coatings.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: June 27, 2017
    Assignee: Medtronic Vascular, Inc.
    Inventors: Kishore Udipi, Peiwen Cheng, Shalaby W. Shalaby, Todd Campbell, Su Ping Lyu
  • Patent number: 9254350
    Abstract: Implantable medical devices having a metallic surface coated with a bioabsorbable primer polymer layer under a bioabsorbable drug polymer layer. Thus, in addition to the degradation of the drug polymer layer, there is degradation of the primer layer. The underlying metallic framework may or may not degrade depending on whether bioabsorbable or biostable metals are chosen.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: February 9, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventors: Kishore Udipi, Ya Guo
  • Patent number: 9150837
    Abstract: Compounds and methods for utilizing compounds comprising a superoxide dismutase mimetic covalently linked to polyethylene glycol. Methods are also provided for preparing a superoxide dismutase mimetic covalently linked to a polyethylene glycol, the methods comprising reacting an activated polyethylene glycol with a superoxide dismutase mimetic, or alternatively, reacting a superoxide dismutase mimetic with an activated polyethylene glycol. A method is also provided for preventing or treating a disease or disorder in which superoxide anions are implicated, comprising administering to a subject in need thereof, a therapeutically effective amount of a compound comprising a superoxide dismutase mimetic covalently linked to a polyethylene glycol. Methods of determining the safety and efficacy of the compounds are also provided. Methods for determining the safety and efficacy can include methods in lab animals and humans.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: October 6, 2015
    Assignee: GALERA LABS LLC
    Inventors: Daniela Salvemini, William L. Neumann, Samuel Tremont, Kishore Udipi, Amruta Reddy Poreddy
  • Patent number: 9056156
    Abstract: Disclosed are drug delivery systems comprising drugs admixed with polymers having drug solubility gradients and methods of making the polymers. Also disclosed are medical devices having coatings thereon comprising the drug solubility gradient-containing polymers and at least one drug.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: June 16, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Mingfei Chen, Peiwen Cheng, Kishore Udipi
  • Patent number: 9056153
    Abstract: The present disclosure generally relates to biocompatible polymers for coating or fabricating implantable medical devices and to implantable medical devices having the present biocompatible polymers. The disclosed biocompatible polymers exhibit superior biocompatibility and therefore minimize unwanted immune reaction from a patient into whom a medical device is implanted.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 16, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Mingfei Chen, Peiwen Cheng, Kishore Udipi
  • Patent number: 8974524
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: March 10, 2015
    Assignee: Medtronic, Inc.
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo
  • Publication number: 20140370071
    Abstract: Disclosed are drug delivery systems comprising drugs admixed with polymers having drug solubility gradients and methods of making the polymers. Also disclosed are medical devices having coatings thereon comprising the drug solubility gradient-containing polymers and at least one drug.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Mingfei Chen, Peiwen Chen, Kishore Udipi
  • Patent number: 8871238
    Abstract: Biodegradable polymers useful for fabricating implantable medical devices and as coatings for medical devices are provided. The biodegradable polymers are biocompatible and can be tuned to provide optimum bioactive agent elution rates as well as degradation rates. Also provided are methods for making medical devices and medical device coatings using the biodegradable polymers.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: October 28, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: Peiwen Cheng, Mingfei Chen, Kishore Udipi
  • Publication number: 20140314945
    Abstract: The gradient coated stent 150 of the present invention provides a coated stent having a continuous coating 130 disposed on the stent elements. The continuous coating 130 includes a first coating component and a second coating component. The concentration of the first coating component varies continuously over at least part of the thickness of the continuous coating 130. The concentration of the second coating component can also vary over at least part of the thickness of the continuous coating 130. In one embodiment, the concentration of the first coating component decreases in the direction from the stent element towards the outer edge of the continuous coating 130 and the concentration of the second coating component increases in the direction from the stent element towards the outer edge of the continuous coating 130.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Peiwen Cheng, Patrice Brint, Wenda Carlyle, Diane Judd, Kishore Udipi
  • Patent number: 8852620
    Abstract: Disclosed are drug delivery systems comprising drugs admixed with polymers having drug solubility gradients and methods of making the polymers. Also disclosed are medical devices having coatings thereon comprising the drug solubility gradient-containing polymers and at least one drug.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: October 7, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: Mingfei Chen, Peiwen Cheng, Kishore Udipi
  • Patent number: 8801692
    Abstract: The gradient coated stent 150 of the present invention provides a coated stent having a continuous coating 130 disposed on the stent elements. The continuous coating 130 includes a first coating component and a second coating component. The concentration of the first coating component varies continuously over at least part of the thickness of the continuous coating 130. The concentration of the second coating component can also vary over at least part of the thickness of the continuous coating 130. In one embodiment, the concentration of the first coating component decreases in the direction from the stent element towards the outer edge of the continuous coating 130 and the concentration of the second coating component increases in the direction from the stent element towards the outer edge of the continuous coating 130.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: August 12, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: Peiwen Cheng, Patrice Tremble, Wenda Carlyle, Diane Judd, Kishore Udipi
  • Patent number: 8709465
    Abstract: The present disclosure in a broad aspect provides for diazeniumdiolated phosphorylcholine polymers and associated methods for achieving nitric oxide release. The present polymers have superior biocompatibility and are useful for coating or fabricating medical devices such as a vascular stent.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: April 29, 2014
    Assignee: Medtronic Vascular, Inc.
    Inventors: Mingfei Chen, David Shumaker, Peiwen Cheng, Kishore Udipi
  • Publication number: 20140046435
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: Medtronic, Inc.
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo
  • Publication number: 20130287696
    Abstract: Compounds and methods for utilizing compounds comprising a superoxide dismutase mimetic covalently linked to polyethylene glycol. Methods are also provided for preparing a superoxide dismutase mimetic covalently linked to a polyethylene glycol, the methods comprising reacting an activated polyethylene glycol with a superoxide dismutase mimetic, or alternatively, reacting a superoxide dismutase mimetic with an activated polyethylene glycol. A method is also provided for preventing or treating a disease or disorder in which superoxide anions are implicated, comprising administering to a subject in need thereof, a therapeutically effective amount of a compound comprising a superoxide dismutase mimetic covalently linked to a polyethylene glycol. Methods of determining the safety and efficacy of the compounds are also provided. Methods for determining the safety and efficacy can include methods in lab animals and humans.
    Type: Application
    Filed: June 27, 2013
    Publication date: October 31, 2013
    Inventors: Daniela Salvemini, William L. Neumann, Samuel Tremont, Kishore Udipi, Amruta Reddy Poreddy
  • Patent number: 8562673
    Abstract: A percutaneous stented valve delivery device including an inner shaft, a sheath, and a delivery capsule. The sheath slidably receives the inner shaft. A capsule proximal zone is attached to the sheath. A capsule distal zone is configured to transition between normal and flared states. A diameter of the distal zone is greater in the flared state, and the capsule includes a shape memory component that naturally assumes the normal state. The device is operable to perform a reversible partial deployment procedure in which a portion of the prosthesis is exposed distal the capsule and allowed to radially expand. Subsequently, with distal advancement of the capsule, the distal zone transitions to the flared state and imparts a collapsing force onto the prosthesis, causing the prosthesis to radially collapse and become recaptured within the delivery capsule. The capsule can include a laser cut tube encapsulated by a polymer.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 22, 2013
    Assignee: Medtronic, Inc.
    Inventors: Hubert Yeung, John Shanahan, Joshua Dwork, Adam Shipley, Jeffrey Allen, Susheel Deshmukh, Kishore Udipi, Ya Guo
  • Patent number: 8518097
    Abstract: The present invention provides a system for treating a vascular condition, including a catheter, a stent with a stent framework operably coupled to the catheter, and a drug-polymer coating on the stent framework including at least one plasticizer dispersed within the drug-polymer coating.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: August 27, 2013
    Assignee: Medtronic Vascular, Inc.
    Inventors: Kishore Udipi, Peiwen Cheng
  • Publication number: 20130030406
    Abstract: The present disclosure provides a textured dilatation balloon that includes a balloon body having a proximal end, a distal end, and at least one indentation in the balloon body in an un-inflated state, wherein the balloon body comprises a continuous polymer tube with an external surface having at least one therapeutic agent disposed within the at least one indentation.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: Medtronic Vascular, Inc.
    Inventors: Susheel Deshmukh, Kishore Udipi, Josiah Wilcox
  • Publication number: 20120323211
    Abstract: A coated balloon device for stabilizing a section of a blood vessel in a living subject is disclosed. The coating layer of the coated balloon comprises a phenolic compound having a plurality of phenolic groups connected to form a hydrophobic core with peripheral phenolic hydroxyl groups. The coating layer of the coated balloon may contain a hydrophilic polymer to facilitate the release of the phenolic compound. The balloon in general is made of a compliant polymer for atraumatic contact with the blood vessel. In some embodiments, the coating of the coated balloon device further comprises a hydrophilic undercoat layer between the balloon and the coating layer. In some embodiments, the coated balloon device further comprises a sacrificial top coating that dissolves upon delivery into the section of the blood vessel and comprises a hydrophilic composition including sugar, sugar derivatives, or a combination thereof.
    Type: Application
    Filed: May 17, 2012
    Publication date: December 20, 2012
    Inventors: Matthew F. Ogle, Wenda C. Carlyle, Edward J. Anderson, Kishore Udipi